

A: Paul Trap

A-1. Due to the symmetry, on the z-axis the only non-zero component of electric field is in the z-direction. So:

$$
\vec{E}(0,0,z) = E_z(0,0,z) \,\hat{z} = \hat{z} \int \frac{dq}{4\pi\epsilon_0} \frac{1}{(R^2 + z^2)} \times \frac{z}{(R^2 + z^2)^{\frac{1}{2}}}
$$

The element dq is equal to $\lambda R d\phi$ where ϕ is the angle with the x-axis. Thus:

$$
E(0,0,z) = \hat{z} \int \frac{\lambda R d\phi}{4\pi \epsilon_0} \frac{z}{(z^2 + R^2)^{\frac{3}{2}}} = \hat{z} \frac{\lambda R}{2\epsilon_0} \frac{z}{(z^2 + R^2)^{\frac{3}{2}}}
$$

For $z \ll R$ this can be written as:

$$
E_z(0,0,z) = \frac{\lambda R}{2\epsilon_0} \frac{z}{R^3} = \frac{\lambda z}{2\epsilon_0 R^2}
$$

Very close to the z-axis, we can write:

$$
E_z(x, y, z) = E_z(0, 0, z) + x \frac{\partial E_z}{\partial x}\big|_{(0, 0, z)} + y \frac{\partial E_z}{\partial y}\big|_{(0, 0, z)} + O(x^2, y^2, z^2)
$$

Since, there is no difference between x and $-x$ or y and $-y$, it turns out that $\frac{\partial E_z}{\partial x} = \frac{\partial E_z}{\partial y} = 0$. Thus, to the first order in x , y , and z we have:

$$
E_z(x, y, z) = \frac{\lambda z}{2\epsilon_0 R^2}
$$

Consider a Gaussian surface in the shape of a symmetric cylinder around the z-axis whose bases are parallel with the xy-plane. The cylinder's radius is ρ and its height is 2z both of which are small quantities. By Gauss's law we have:

$$
0 = \frac{Q_{in}}{\epsilon_0} = \oint \vec{E} \cdot d\vec{S} = \int_{S_1} \vec{E} \cdot d\vec{S} + \int_{S_2} \vec{E} \cdot d\vec{S} + \int_{S_3} \vec{E} \cdot d\vec{S}
$$

Integration over S_1 and S_2 gives:

$$
\int_{S_1} \vec{E} \cdot d\vec{S} = \int_{S_2} \vec{E} \cdot d\vec{S} = \pi \rho^2 \times \frac{\lambda z}{2\epsilon_0 R^2}.
$$

Integration over S_3 involves the ρ -component for which we can write the following expansion:

$$
E_{\rho}(z,\rho,\phi) = E_{\rho}(0,\rho,\phi) + z \frac{\partial E_{\rho}}{\partial z}|_{(0,\rho,\phi)} + O(z^2)
$$

We have $0 = \frac{\partial E_{\rho}}{\partial z}$ $\frac{\partial L_{\rho}}{\partial z}|_{(0,\rho,\phi)}$ due to symmetry between z and $-z$, hence, $E_{\rho}(z,\rho,\phi) = E_{\rho}(0,\rho,\phi)$ up to the first order. Axial symmetry also implies $\frac{dE_{\rho}}{d\phi} = 0$. Consequently:

$$
\int_{S_3} \vec{E} \cdot d\vec{S} = E_{\rho}(0, \rho, 0) \times 2z \times 2\pi\rho
$$

So, Gauss's law implies:

$$
0 = E_{\rho} \times 4\pi z \rho + 2\pi \rho^2 \frac{\lambda z}{2\epsilon_0 R^2}
$$

Therefore, E_{ρ} will be:

$$
E_{\rho} = -\frac{\lambda \rho}{4\epsilon_0 R^2}
$$

In the cylindrical coordinate we will have:

$$
\vec{E}(\rho,\phi,z)=-\frac{\lambda\rho}{4\epsilon_0R^2}\hat{\rho}+\frac{\lambda z}{2\epsilon_0R^2}\hat{z}
$$

In cartesian coordinates we will have:

$$
\vec{E}(x, y, z) = \frac{\lambda}{4\epsilon_0 R^2}(-x, -y, 2z)
$$

Since the ring is positively charged, the equilibrium in the x and y directions are stable, while the equilibrium in the z-direction is unstable. The equations of motion in the x and y directions read:

$$
m\ddot{x} = qE_x = -\frac{q\lambda}{4\epsilon_0 R^2}x
$$

$$
m\ddot{y} = qE_y = -\frac{q\lambda}{4\epsilon_0 R^2}y
$$

Therefore, the frequencies of small oscillations are:

$$
\omega_x^2 = \omega_y^2 = \frac{q\lambda}{4\epsilon_0 R^2 m}
$$

A-1 (1.5 pt)
\n(a)
$$
\vec{E}(x, y, z) = \frac{-\lambda x}{4\epsilon_0 R^2} \hat{x} + \frac{-\lambda y}{4\epsilon_0 R^2} \hat{y} + \frac{\lambda z}{2\epsilon_0 R^2} \hat{z}
$$

\n(b) $\omega_x = \omega_y = \sqrt{\frac{Q\lambda}{4\epsilon_0 R^2 m}}$

A-2.

The force in the z-direction is:

$$
F_z = qE_z = \frac{Q\lambda z}{2\epsilon_0 R^2} = \frac{Q}{2\epsilon_0 R^2} \lambda_0 z + \frac{Qu}{2\epsilon_0 R^2} \cos \Omega t z
$$

the equation of motion can thus be written as:

$$
\ddot{z} = \left(\frac{Q\lambda_0}{2\epsilon_0 R^2 m} + \frac{Qu}{2\epsilon_0 R^2 m} \cos \Omega t\right) z
$$

Therefore:

$$
k = \sqrt{\frac{Q\lambda_0}{2\epsilon_0 R^2 m}}
$$
 ,
$$
a = \frac{Qu}{2\epsilon_0 R^2 m \Omega^2}
$$

A-2 (0.4 pt) $k =$ $Q\lambda_0$ $2\epsilon_0R^2m$

$$
, a = \frac{Qu}{2\epsilon_0 R^2 m \Omega^2}
$$

A.3.

$$
z = p(t) + q(t) \qquad \rightarrow \qquad \ddot{p} + \ddot{q} = (k^2 + a\Omega^2 \cos \Omega t)(p + q)
$$

- 1. We are assuming that p is almost constant, $\ddot{p} \simeq 0$.
- 2. According to the assumptions $k^2 \ll a\Omega^2$ and $q \ll p$ we can ignore k^2 in the first term on the right-hand side of the equation and q in the second term.

hence, the equation of motion can be simplified as follows:

$$
\ddot{q} = pa\Omega^2 \cos \Omega t.
$$

As we have assumed that p is a constant, the second derivative of q is just proportional to cos $Ωt$ which gives:

 $1.1.1.1.1.1.$

$$
q = -pa\cos\Omega t + c_1t + c_2.
$$

Since q is supposed to remain small, c_1 must vanish. Also $c_2 = 0$ because the mean value of *q* is supposed to remain zero. Therefore:

 $q = -pa \cos \Omega t$

A-3 (1.8 pt) (a) $\ddot{q}(t) = pa\Omega^2 \cos \Omega t$ (b) $q(t) = -pa \cos \Omega t$

A-4. Using the final result for q the equation of motion for p reads:

$$
\ddot{p} + pa\Omega^2 \cos \Omega t = (k^2 + a\Omega^2 \cos \Omega t)(p - ap\cos \Omega t)
$$

Which gives:

$$
\ddot{p} = k^2 p - ak^2 p \cos \Omega t - a^2 \Omega^2 p \cos^2 \Omega t
$$

Averaging over one period, we'll have:

$$
\langle \cos \Omega t \rangle = 0 \qquad , \qquad \langle \cos^2 \Omega t \rangle = \frac{1}{2}
$$

and:

$$
\ddot{p} = \left(k^2 - \frac{a^2 \Omega^2}{2}\right)p.
$$

In order for the motion to be stable, the expression inside the parentheses should be negative, i.e.

$$
\frac{a^2\Omega^2}{2} > k^2 \qquad \rightarrow \qquad \Omega > \sqrt{2}\frac{k}{a}
$$

A-4 (1.5 pt)
\n(a)
$$
\ddot{p}(t) = \left(k^2 - \frac{a^2 \Omega^2}{2}\right) p
$$

\n(b) $\Omega > \sqrt{2} \frac{k}{a}$

A.5. With the given data we have:

$$
k = \sqrt{\frac{Q\lambda_0}{2\epsilon_0 R^2 m}} = 2 \times 10^5 \text{ rad/s}
$$

.

$$
a = 0.04
$$
 \rightarrow $\Omega_{\text{min}} = 7 \times 10^6 \text{ rad/s}$

which is in the range of radio waves.

A-5 (0.4 pt)
\n
$$
k = 2 \times 10^5
$$
 rad/s
\n $\Omega_{\text{min}} = 7 \times 10^6$ rad/s

B: Doppler Cooling

B-1. From the uncertainty principle we know:

 $\Delta E \times \Delta t \simeq \hbar$

Here Δt is the time τ and $\Delta E = \hbar \Delta \omega$. So:

$$
\hbar \Delta \omega \times \tau \simeq \hbar \quad \rightarrow \quad \Delta \omega \simeq \frac{1}{\tau} = \Gamma
$$

B-2. We denote the forward and backward collision rates by s_+ and s_- respectively. Let us proceed in the atom's frame of reference. Ignoring the terms of the order $\frac{v^2}{r^2}$ $\frac{v}{c^2}$, the Doppler effect can be written in the following form:

$$
\omega' = \omega \left(1 + \frac{v}{c} \right)
$$

Taking the atom's velocity in the positive x -direction, we have:

 $\omega_+ = \omega_L (1 +$ $\boldsymbol{\mathcal{V}}$ \mathcal{C}_{0}) $\omega_-=\omega_{\rm L} (1-\$ \mathcal{V} \mathcal{C}_{0}^{0})

So:

$$
s_{+} = s_{L} + \alpha \left(\omega_{L} \left(1 + \frac{v}{c}\right) - \omega_{L}\right) = s_{L} + \alpha \omega_{L} \frac{v}{c}
$$

$$
s_{-} = s_{L} + \alpha \left(\omega_{L} \left(1 - \frac{v}{c}\right) - \omega_{L}\right) = s_{L} - \alpha \omega_{L} \frac{v}{c}
$$

The momentum transfer per unit time from the oncoming photons to the atom is equal to:

$$
\pi_+ = s_+ \times (-\hbar k_+)
$$

For the backward photons we have:

$$
\pi_{-}=s_{-}\times(+\hbar k_{-})
$$

Where $k_{\pm} = \frac{\hbar \omega_{\pm}}{c}$ $\frac{\omega_{\pm}}{c}$.

The total momentum transferred to the atom per unit time is equal to:

$$
\pi_{+} + \pi_{-} = -2\hbar k_{\mathrm{L}} \frac{\nu}{c} \omega_{\mathrm{L}} \alpha \left(1 + \frac{s_{\mathrm{L}}}{\alpha \omega_{\mathrm{L}}} \right)
$$

Where with the approximation $s_L \ll \alpha \omega_L$, we will arrive at:

$$
\pi_{+} + \pi_{-} = -2\hbar k_{\mathrm{L}} \frac{v}{c} \omega_{\mathrm{L}} \alpha
$$

Note that as the atom is heavy, its velocity almost doesn't change after the absorption of the photon. Therefore, there will be almost no Doppler shifting in the re-emitted photon and hence, on average there will be no momentum transfer to the atom during the re-emission process.

The above expression is, in fact, the force. Since $v > 0$, we have:

$$
F=-(2\alpha\hbar k_{\rm L}^2)v
$$

The same result holds for $v < 0$. This is in the atom's reference frame. However, as we have kept only up to the first order in v/c , the same result holds in the lab frame:

$$
F = -(2\alpha\hbar k_{\rm L}^2)v
$$

S2-7 IRP ysics Olympi Isfahan Iran 2024 B-2 (1.7 pt) \mathcal{V} $s_+ = s_L + \alpha \omega_L$ \mathcal{C}_{0}^{0} $\boldsymbol{\mathcal{V}}$ $s_{-} = s_{L} - \alpha \omega_{L}$ \mathcal{C}_{0}^{0} $\pi_+ = s_+ \times (-\hbar k_+)$ $\pi_{-} = s_{-} \times (+\hbar k_{-})$ $F = -(2\alpha\hbar k_{\rm L}^2)v$

B-3. The atom's momentum before the collision is zero. After the collision it will be (assuming the photon's momentum is in the x -direction):

$$
P_1 = \hbar k_{\rm L}
$$

After re-emitting the photon, we may have two equally likely outcomes for the final momentum:

- 1. The photon is emitted in the positive x -direction which causes the atom's momentum to become zero
- 2. The photon is emitted in the negative x -direction which causes the atom's momentum to become: $P_f = +2\hbar k_L$

Thus, the mean final energy is equal to:

$$
\langle E_{\rm f} \rangle = \langle \frac{P_{\rm f}^2}{2m} \rangle = \frac{1}{2} \times 0 + \frac{1}{2} \times \frac{4\hbar^2 k_{\rm L}^2}{2m} = \frac{\hbar^2 k_{\rm L}^2}{m}
$$

This process occurs during the time τ . So, the input power (the power gained by the atom as a result of this process) is equal to:

$$
P_{\rm in} = \frac{\hbar^2 k_{\rm L}^2}{m\tau}
$$

B-3 (1.0 pt) $P_{\text{in}} =$ $\hbar^2 k_{\rm L}^2$ $m\tau$

B.4. The output power (the power lost by the atom through collision with laser photons) can be written as:

$$
P_{\text{out}} = F \cdot v = -2\alpha \hbar k_{\text{L}}^2 v^2
$$

At equilibrium we should have:

$$
P_{\text{out}} + P_{\text{in}} = 0 \quad \rightarrow \quad \frac{\hbar^2 k_{\text{L}}^2}{m\tau} = 2\alpha\hbar k_{\text{L}}^2 \overline{v^2} \qquad \rightarrow \qquad \overline{v^2} = \frac{\hbar\Gamma}{2\alpha m}
$$

And the temperature of this system is equal to:

$$
\frac{1}{2}m\overline{v^2} = \frac{1}{2}k_BT \qquad \rightarrow \qquad T = \frac{\hbar\Gamma}{2\alpha k_B}
$$

B-4 (0.8 pt)
\n
$$
P_{\text{out}} = -2\alpha \hbar k_{\text{L}}^2 v^2
$$
\n
$$
\overline{v^2} = \frac{\hbar \Gamma}{2\alpha m}
$$
\n
$$
T = \frac{\hbar \Gamma}{2\alpha k_{\text{B}}}
$$

B-5. Considering the given data:

$$
T = \frac{1.055 \times 10^{-34} \text{ J.s}}{2 \times 4 \times 1.381 \times 10^{-23} \text{ J/K} \times 5 \times 10^{-9} \text{ s}} = 2 \times 10^{-4} \text{ K}
$$

B-5 (0.4 pt) $T = 2 \times 10^{-4}$ K