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A: Paul Trap 
 

A-1. Due to the symmetry, on the 𝑧-axis the only non-zero component of electric field is in 

the 𝑧-direction. So: 

𝐸ሬԦሺ0,0, 𝑧ሻ = 𝐸𝑧ሺ0,0, 𝑧ሻ 𝑧Ƹ = 𝑧Ƹ  න
𝑑𝑞

4𝜋𝜖0

1

ሺ𝑅2 + 𝑧2ሻ
×

𝑧

ሺ𝑅2 + 𝑧2ሻ
1
2

        

The element 𝑑𝑞 is equal to 𝜆𝑅𝑑𝜙 where 𝜙 is the angle with the 𝑥-axis. Thus:  

𝐸ሺ0,0, 𝑧ሻ = 𝑧Ƹ න
𝜆𝑅𝑑𝜙

4𝜋𝜖0

𝑧

ሺ𝑧2 + 𝑅2ሻ
3
2

= 𝑧Ƹ
𝜆𝑅

2𝜖0

𝑧

ሺ𝑧2 + 𝑅2ሻ
3
2

  

For 𝑧 ≪ 𝑅 this can be written as: 

𝐸𝑧ሺ0,0, 𝑧ሻ =
𝜆𝑅

2𝜖0

𝑧

𝑅3
=

𝜆𝑧

2𝜖0𝑅2
 

Very close to the 𝑧-axis, we can write: 

𝐸𝑧ሺ𝑥, 𝑦, 𝑧ሻ = 𝐸𝑧ሺ0,0, 𝑧ሻ + 𝑥
𝜕𝐸𝑧

𝜕𝑥
ȁሺ0,0,𝑧ሻ + 𝑦

𝜕𝐸𝑧

𝜕𝑦
ȁሺ0,0,𝑧ሻ + 𝑂ሺ𝑥2, 𝑦2, 𝑧2ሻ 

Since, there is no difference between 𝑥 and −𝑥 or 𝑦 and −𝑦, it turns out that 
𝜕𝐸𝑧

𝜕𝑥
=

𝜕𝐸𝑧

𝜕𝑦
= 0. 

Thus, to the first order in 𝑥, 𝑦, and 𝑧 we have: 

𝐸𝑧ሺ𝑥, 𝑦, 𝑧ሻ =
𝜆𝑧

2𝜖0𝑅2
 

Consider a Gaussian surface in the shape of a symmetric cylinder around the 𝑧-axis whose 

bases are parallel with the 𝑥𝑦-plane. The cylinder’s radius is 𝜌 and its height is 2𝑧 both of 

which are small quantities. By Gauss’s law we have: 

 

𝑆1                                

                                     

𝑆3                                          

 𝑆2                             
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0 =
𝑄𝑖𝑛

𝜖0
= ර 𝐸ሬԦ. 𝑑𝑆Ԧ = න 𝐸ሬԦ. 𝑑𝑆Ԧ

𝑆1

+ න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆2

+ න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆3

 

Integration over 𝑆1 and 𝑆2 gives:  

න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆1

= න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆2

= 𝜋𝜌2 ×
𝜆𝑧

2𝜖0𝑅2
 . 

Integration over 𝑆3 involves the 𝜌-component for which we can write the following expansion:  

𝐸𝜌ሺ𝑧, 𝜌, 𝜙ሻ = 𝐸𝜌ሺ0, 𝜌, 𝜙ሻ + 𝑧
𝜕𝐸𝜌

𝜕𝑧
ȁሺ0,𝜌,𝜙ሻ + 𝑂ሺ𝑧2ሻ 

We have 0 =
𝜕𝐸𝜌

𝜕𝑧
ȁሺ0,𝜌,𝜙ሻ due to symmetry between 𝑧 and −𝑧, hence, 𝐸𝜌ሺ𝑧, 𝜌, 𝜙ሻ = 𝐸𝜌ሺ0, 𝜌, 𝜙ሻ  

up to the first order. Axial symmetry also implies 
𝑑𝐸𝜌

𝑑𝜙
= 0. Consequently: 

න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆3

= 𝐸𝜌ሺ0, 𝜌, 0ሻ × 2𝑧 × 2𝜋𝜌 

So, Gauss’s law implies: 

0 = 𝐸𝜌 × 4𝜋𝑧𝜌 + 2𝜋𝜌2
𝜆𝑧

2𝜖0𝑅2
 

Therefore, 𝐸𝜌 will be: 

𝐸𝜌 = −
𝜆𝜌

4𝜖0𝑅2
 

In the cylindrical coordinate we will have: 

𝐸ሬԦሺ𝜌, 𝜙, 𝑧ሻ = −
𝜆𝜌

4𝜖0𝑅2
𝜌ො +

𝜆𝑧

2𝜖0𝑅2
𝑧Ƹ 

In cartesian coordinates we will have: 

𝐸ሬԦሺ𝑥, 𝑦, 𝑧ሻ =
𝜆

4𝜖0𝑅2
ሺ−𝑥, −𝑦, 2𝑧ሻ 

Since the ring is positively charged, the equilibrium in the 𝑥 and 𝑦 directions are stable, while 

the equilibrium in the 𝑧-direction is unstable. The equations of motion in the 𝑥 and 𝑦 directions 

read: 

𝑚𝑥ሷ = 𝑞𝐸𝑥 = −
𝑞𝜆

4𝜖0𝑅2
𝑥 

𝑚𝑦ሷ = 𝑞𝐸𝑦 = −
𝑞𝜆

4𝜖0𝑅2
𝑦 
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Therefore, the frequencies of small oscillations are: 

𝜔𝑥
2 = 𝜔𝑦

2 =
𝑞𝜆

4𝜖0𝑅2𝑚
 

 

A-1 (1.5 pt) 
 

(a) 𝐸ሬԦሺ𝑥, 𝑦, 𝑧ሻ =
−𝜆𝑥

4𝜖0𝑅2 𝑥ො +
−𝜆𝑦

4𝜖0𝑅2 𝑦ො +
𝜆𝑧

2𝜖0𝑅2 𝑧Ƹ  

(b) 𝜔𝑥 = 𝜔𝑦 = √
𝑄𝜆

4𝜖0𝑅2𝑚
                   

                                                                      

 

A-2. 

The force in the 𝑧-direction is: 

𝐹𝑧 = 𝑞𝐸𝑧 =
𝑄𝜆𝑧

2𝜖0𝑅2
=

𝑄

2𝜖0𝑅2
 𝜆0𝑧 +

𝑄𝑢

2𝜖0𝑅2
cos Ω𝑡 𝑧 

the equation of motion can thus be written as: 

𝑧ሷ = ൬
𝑄𝜆0

2𝜖0𝑅2𝑚
+

𝑄𝑢

2𝜖0𝑅2𝑚
cos Ω𝑡൰ 𝑧 

Therefore: 

𝑘 = ඨ
𝑄𝜆0

2𝜖0𝑅2𝑚
                   ,                   𝑎 =

𝑄𝑢

2𝜖0𝑅2𝑚Ω2
 

A-2 (0.4 pt) 
 

𝑘 =  √
𝑄𝜆0

2𝜖0𝑅2𝑚
                                                                    , 𝑎 = 

𝑄𝑢

2𝜖0𝑅2𝑚Ω2
                     

 

A.3. 

𝑧 = 𝑝ሺ𝑡ሻ + 𝑞ሺ𝑡ሻ            →              𝑝ሷ + 𝑞ሷ = ሺ𝑘2 + 𝑎Ω2 cos Ω𝑡ሻሺ𝑝 + 𝑞ሻ 

1. We are assuming that 𝑝 is almost constant, 𝑝ሷ ≃ 0. 

2. According to the assumptions 𝑘2 ≪ 𝑎Ω2 and 𝑞 ≪ 𝑝 we can ignore 𝑘2 in the first term 

on the right-hand side of the equation and 𝑞 in the second term.  

hence, the equation of motion can be simplified as follows:  

𝑞ሷ = 𝑝𝑎Ω2 cos Ω𝑡. 
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As we have assumed that 𝑝 is a constant, the second derivative of 𝑞 is just proportional to 

cos Ω𝑡 which gives:  

𝑞 = −𝑝𝑎 cos Ω𝑡 + 𝑐1𝑡 + 𝑐2. 

Since 𝑞 is supposed to remain small, 𝑐1 must vanish. Also 𝑐2 = 0 because the mean value 

of 𝑞 is supposed to remain zero. Therefore: 

𝑞 = −𝑝𝑎 cos Ω𝑡 

A-3 (1.8 pt) 
 

(a) 𝑞ሷ ሺ𝑡ሻ = 𝑝𝑎Ω2 cos Ω𝑡                                                              

 

(b) 𝑞ሺ𝑡ሻ = −𝑝𝑎 cos Ω𝑡                                                                     

 

A-4. Using the final result for 𝑞 the equation of motion for 𝑝 reads: 

𝑝ሷ + 𝑝𝑎Ω2 cos Ω𝑡 = ሺ𝑘2 + 𝑎Ω2 cos Ω𝑡ሻሺ𝑝 − 𝑎𝑝 cos Ω𝑡ሻ 

Which gives: 

𝑝ሷ = 𝑘2𝑝 − 𝑎𝑘2𝑝 cos Ω𝑡 − 𝑎2Ω2𝑝 cos2 Ω𝑡 

Averaging over one period, we’ll have: 

cosۃ Ω𝑡ۄ = cos2ۃ               ,               0 Ω𝑡ۄ =
1

2
 

and: 

𝑝ሷ = ቆ𝑘2 −
𝑎2Ω2

2
ቇ 𝑝. 

In order for the motion to be stable, the expression inside the parentheses should be negative, 

i.e. 

𝑎2Ω2

2
> 𝑘2           →              Ω > ξ2

𝑘

𝑎
 

A-4 (1.5 pt) 
 

(a) 𝑝ሷሺ𝑡ሻ = (𝑘2 −
𝑎2Ω2

2
) 𝑝            

 

(b) Ω > ξ2
𝑘

𝑎
                        

 

A.5. With the given data we have: 
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𝑘 = ඨ
𝑄𝜆0

2𝜖0𝑅2𝑚
= 2 × 105 rad/s 

𝑎 = 0.04     →      Ωmin = 7 × 106 rad/s 

which is in the range of radio waves.  

A-5 (0.4 pt) 
 

𝑘 = 2 × 105 rad/s                                                        

 

Ωmin = 7 × 106rad/s     

 

 

 

 

B: Doppler Cooling 
 

 

B-1. From the uncertainty principle we know: 

Δ𝐸 × Δ𝑡 ≃ ℏ 

Here Δ𝑡 is the time 𝜏 and Δ𝐸 = ℏΔ𝜔. So: 

ℏΔ𝜔 × 𝜏 ≃ ℏ   →      Δ𝜔 ≃
1

𝜏
= Γ 

 

B-1 (0.5 pt) 
 

Γ =
1

𝜏
 

 

B-2. We denote the forward and backward collision rates by 𝑠+ and 𝑠− respectively. Let us 

proceed in the atom’s frame of reference. Ignoring the terms of the order 
𝑣2

𝑐2
, the Doppler 

effect can be written in the following form: 

𝜔′ = 𝜔 (1 +
𝑣

𝑐
) 

Taking the atom’s velocity in the positive 𝑥-direction, we have: 
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𝜔+ = 𝜔L (1 +
𝑣

𝑐
) 

𝜔− = 𝜔L (1 −
𝑣

𝑐
) 

So: 

𝑠+ = 𝑠L + 𝛼 (𝜔L (1 +
𝑣

𝑐
) − 𝜔L) = 𝑠L + 𝛼𝜔L

𝑣

𝑐
  

𝑠− = 𝑠𝐿 + 𝛼 (𝜔L (1 −
𝑣

𝑐
) − 𝜔L) = 𝑠L − 𝛼𝜔L

𝑣

𝑐
 

The momentum transfer per unit time from the oncoming photons to the atom is equal to: 

𝜋+ = 𝑠+ × ሺ−ℏ𝑘+ሻ 

For the backward photons we have: 

𝜋− = 𝑠− × ሺ+ℏ𝑘−ሻ 

Where 𝑘± =
ℏ𝜔±

𝑐
.  

The total momentum transferred to the atom per unit time is equal to: 

𝜋+ + 𝜋− = −2ℏ𝑘L

𝑣

𝑐
 𝜔L𝛼 ൬1 +

𝑠L

𝛼𝜔L
൰ 

Where with the approximation 𝑠L ≪ 𝛼𝜔L, we will arrive at: 

𝜋+ + 𝜋− = −2ℏ𝑘L

𝑣

𝑐
 𝜔L𝛼 

Note that as the atom is heavy, its velocity almost doesn’t change after the absorption of the 

photon. Therefore, there will be almost no Doppler shifting in the re-emitted photon and hence, 

on average there will be no momentum transfer to the atom during the re-emission process. 

The above expression is, in fact, the force. Since 𝑣 > 0, we have: 

𝐹 = −ሺ2𝛼ℏ𝑘L
2ሻ𝑣 

The same result holds for 𝑣 < 0. This is in the atom’s reference frame. However, as we have 

kept only up to the first order in 𝑣/𝑐, the same result holds in the lab frame: 

𝐹 = −ሺ2𝛼ℏ𝑘L
2ሻ𝑣 
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B-2 (1.7 pt) 
 

𝑠+ = 𝑠𝐿 + 𝛼𝜔L

𝑣

𝑐
 

𝑠− = 𝑠𝐿 − 𝛼𝜔L

𝑣

𝑐
 

𝜋+ = 𝑠+ × ሺ−ℏ𝑘+ሻ 

𝜋− = 𝑠− × ሺ+ℏ𝑘−ሻ 

𝐹 = −ሺ2𝛼ℏ𝑘L
2ሻ𝑣 

 

B-3. The atom’s momentum before the collision is zero. After the collision it will be 

(assuming the photon’s momentum is in the 𝑥-direction): 

𝑃1 = ℏ𝑘L 

After re-emitting the photon, we may have two equally likely outcomes for the final 

momentum: 

1. The photon is emitted in the positive 𝑥-direction which causes the atom’s momentum 

to become zero 

2. The photon is emitted in the negative 𝑥-direction which causes the atom’s momentum 

to become: 𝑃f = +2ℏ𝑘L 

Thus, the mean final energy is equal to:   

ۄ𝐸fۃ = ۃ
𝑃f

2

2𝑚
ۄ =

1

2
× 0 +

1

2
×

4ℏ2𝑘L
2

2𝑚
=

ℏ2𝑘L
2

𝑚
 

This process occurs during the time 𝜏. So, the input power (the power gained by the atom as a 

result of this process) is equal to: 

𝑃in =
ℏ2𝑘L

2

𝑚𝜏
 

 

B-3 (1.0 pt) 
 

𝑃in =
ℏ2𝑘L

2

𝑚𝜏
 

 

 

B.4. The output power (the power lost by the atom through collision with laser photons) can 

be written as: 
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𝑃out = 𝐹 ∙ 𝑣 = −2𝛼ℏ𝑘L
2𝑣2 

At equilibrium we should have: 

𝑃out + 𝑃in = 0     →         
ℏ2𝑘L

2

𝑚𝜏
= 2𝛼ℏ𝑘L

2𝑣2തതത           →           𝑣2തതത =
ℏΓ

2𝛼𝑚
 

And the temperature of this system is equal to: 

1

2
𝑚𝑣2തതത =

1

2
𝑘B𝑇         →          𝑇 =

ℏΓ

2𝛼𝑘B
 

 

B-4 (0.8 pt) 
 

𝑃out = −2𝛼ℏ𝑘L
2𝑣2                                                                       

 

𝑣2തതത =
ℏΓ

2𝛼𝑚
                  

 

𝑇 =
ℏΓ

2𝛼𝑘B
 

 

B-5. Considering the given data: 

𝑇 =
1 055 × 10 34 J.s

2 × 4 × 1 381 × 10 23 J/K ×5 × 10 9 s
= 2 × 10−4 K 

B-5 (0.4 pt) 
 

𝑇 = 2 × 10−4 K 

 


