

E2. Marking Scheme & Solution Student Code

Experimental Question

page 1 of 7

Parallel Dipole Line Magnetic Trap for Earthquake & Volcanic Sensing (10 points)

A. BASIC CHARACTERISTICS OF PDL TRAP

1. Determination of the magnet's magnetization (M) (2.5 pts)

Quest			Ar	ıswer				Marks
A.1 0.1 pts A.2 1.15	nearby. S Example Measure ≤ 16 mm)	nearby. Subtract subsequent field measurement with this value Example from a Teslameter unit: $B_0 = 0.86 \text{ mT}$ Measure magnetic field B vs. x in the near field region (7 \leq x \leq 16 mm). Where x is the position measured from the center of					0.08 pts range (-10 mT to 10 mT) Correct unit: 0.02 pts Correct label and	
pts	_	n, <i>B</i> ₀ =0.86		B (T) 0.1567 0.1177 0.0942 0.0776 0.0648 0.0570 0.0436 0.0362 0.0312		face. $B = ARTA-INDON$	NESIA	unit for data: 0.1 pts Number of correct data for $x \le 16$ mm: 0.05 pts for each correct data, max 0.45 pts
	Plot:	-1.5 [-2.0 - (Lui 8) 8 u -3.0 - -3.5 -	-5.0 -4.8 In		-11.765 -1.997			Plot: -Correct axis label and unit: 0.05 pts - Using around 75% of plot area: 0.05 pts -For each correct data point: 0.05 pts, max. 0.4 pts -Adding trendline: 0.1 pts

Student Code

Experimental Question

page 2 of 7

A.3 0.75 pts	Use your experimental data to determine the value of the exponent p . Linear regression (LR) $y = a + b x$: $B = \frac{\mu_0 m}{2\pi L} \frac{1}{x^p}$	Obtaining <i>p</i> from graph: 0.05 pts Obtaining <i>p</i> from linear regression: 0.1 pts
	$\ln(B) = a - p \ln x \text{where } a = \ln\left(\frac{\mu_0 m}{2\pi L}\right).$ LR yields : $a = -11.765$ and $b = -1.997$	Result: p = 1.8 - 2.2 : 0.65 pts p = 1.6 - 2.4 : 0.35 pts
	The power exponent: $p = -b = 2.0$	Result with wrong sign: p = (-1.8) - (-2.2) : 0.4pts p = (-1.6) - (-2.4) : 0.1pts
	Note that this is in very good agreement with the exact result: at short distance $(x < L)$ a diametric (or a dipole line) magnet has $B \sim 1/r^2$ dependence. See Ref. [1], Fig. 2c.	More than two sig. figs.: minus 0.05 pts
A.4	Determine the magnet's magnetization M.	Correct unit: 0.05 pts
0.5 pts	$m = \frac{2\pi L}{\mu_0} \exp(a) = 0.987 \text{Am}^2$ $M = \frac{m}{\pi R^2 L} = 1.2 \times 10^6 \text{A/m}$ $M = \frac{m}{16 - 24 \text{JULY 2017}}$	Obtaining intercept (a) from graph: 0.025 pts Obtaining intercept from LR: 0.05 pts
	This is close to the more accurate results from more extensive	Correct formula for m and/or $M: 0.1$ pts
	measurements to far field (see Ref. [1], Fig. 2c) and we use this value for subsequent questions: $M = 1.1 \times 10^6 \text{ A/m}$	Result for <i>M</i> (x10 ⁶ A/m): 0.9 - 1.4 : 0.3 pts 0.1 - 2.5 : 0.15 pts
		More than 2 sig. figs.: minus 0.05 pts

2. The Magnetic Levitation Effect and Magnetic Susceptibility (χ) (1 pts)

Quest	Answer	Marks
ion		
A.5	Place gently a graphite rod HB/0.5 and length = 8 mm.	correct unit: 0.02
0.1	Measure the levitation height y_0 of the rod (see Fig. 7a). Hint:	
pts	Use the insert ruler provided as shown in Fig. 7b. Press the	$y_0 = (1.7 - 2.2) \text{ mm}: 0.08$
	ruler on the magnets to read the position of the graphite rod	pts
	We levitate graphite HB/0.5, $l = 8$ mm. Using the insert-ruler, we measure approximately $\Delta y = 1$ mm from the top of the magnet surface. Thus: $y_0 = R - \Delta y = (3.2 - 1)$ mm = 2.2 mm	partial credit: Only $\Delta y = (1 - 1.5)$ mm: 0.03 pts

Student Code

Experimental Question

1

page 3 of 7

	Use the result from part A.5 to determine the magnetic	
A.6 0.8	susceptibility χ of the graphite rod.	Correct expression for χ: 0.4 pts
pts	Solving for χ : $mg = F_y = -\frac{\mu_0 M^2 \chi V_R}{2} \frac{R^4}{a^5} f_Y(y_0/a)$ $\chi = -\frac{2\rho g a^5}{\mu_0 M^2 R^4 f_Y(y_0/a)}$ We calculate: $a = R + g_M/2 = (3.2 + 1.5/2) \text{ mm} = 3.95 \text{ mm}.$ Using $y_0 = 2.2 \text{ mm}$: $f_Y(u) = \frac{4u(3 - u^2)(1 - u^2)}{(1 + u^2)^5}$, $f_Y(y_0/a) = f_Y(2.2/3.95) = 1.07$ Using the correct $M = 1.1 \times 10^6 \text{A/m}$; and $R = 3.2 \text{ mm}$, $\rho = 1680 \text{ kg/m}^3$ we have: $\chi = -1.85 \times 10^{-4}$. Note that this is very good agreement with the literature value	Result for χ (x10 ⁻⁴) -(1.4 to 2.6): 0.4 pts -(0.5 to 4): 0.2 pts Wrong sign: minus 0.1 pts
	for graphite pencil lead: $\chi = -2 \times 10^{-4}$ (see Ref.[1], pg. 2 & Ref.[2]). The sign is negative indicating a diamagnetic material.	
A.7 0.1 pts	What kind of magnetic material is graphite? Choose one: (i) Ferromagnetic; (ii) Paramagnetic; or (iii) Diamagnetic? (iii) Diamagnetic. Because: (1) Graphite is repelled by magnetic field	Correct choice: 0.1 pts
	(2) The sign of χ is negative.	

3. The camelback potential oscillation and magnetic susceptibility (χ) (1 points)

Quest ion	Answer	Marks
A.8 0.2 pts	Perform an oscillation for the "HB/0.5" graphite and $l=8$ mm. Limit to small oscillation amplitude i.e. $A < 4$ mm. Determine the oscillation period. (The oscillation will decay over time due to damping, ignore this damping effect). Example, we measured 5 oscillations of HB/0.5 with length $l=8$ mm. We displaced it by ~ 3 mm and let it oscillates. We measured 5 oscillation periods:	Correct label and unit: 0.02 pts Number of correct data each 0.01 pts, max 0.03 pts Number of oscillation < 3 : 0 pts >= 3 : 0.05 pts
	Trial 5 Tz (s)	1
	1 6.12	$T_z = (1.2 - 1.5) \text{ s: } 0.1 \text{ pts}$

Student Code

Experimental Question

page 4 of 7

A.9 0.8 pts	$\frac{2}{3} \frac{6.13}{6.14}$ Average: $T_z = 1.23$ s $\frac{Calculate\ the\ magnetic\ susceptibility\ (\chi)\ of\ the\ graphite\ using\ this\ oscillation}{C_1 = 198.6/m^2,\ and\ T_z = 1.23\ s,\ we\ obtain\ \chi = -1.5 \times 10^{-4}\ .$	Correct expression for χ : 0.4 pts Result for χ (x10 ⁻⁴) -(1.4 to 2.6): 0.4 pts -(0.5 to 4): 0.2 pts Wrong sign: minus 0.1 pts
	Note that this is in good agreement with the literature value of the graphite pencil lead: $\chi = -2 \times 10^{-4}$ (Ref.[1], pg. 2); and the sign is negative indicating a diamagnetic material.	

4. Oscillator quality factor (Q) and estimate of air viscosity μ_{A} (3.0 points)

		T
Quest	Answer	Marks
ion		
A.10 0.5 pts	We need to determine the damping time constant of the oscillation τ . Sketch how you measure τ in a simple way . (a) PDL trap (top view) graphite rod (top view) $\Delta t_{1/2}$	Correct idea: 0.3 pts Correct expression for τ: 0.2 pts
	The trick is to use "half-time" concept of exponential decay. We set the oscillation and measure the time taken for the amplitude to halve. The lifetime is: $\tau = \frac{\Delta t_{1/2}}{\ln 2}$	
	Perform oscillation damping experiments with a group of	Correct label and
A.11	rods with various diameters and fixed length of 8 mm.	unit 0.1
1.5 pts	Determine the damping time constant $ au$ for each rods	Number of correct data

Experimental Question

page 5 of 7

We displaced the graphite by ~4 mm, started the stopwatch and then waited until it decays to half.

Student Code

Trial	Diam.	Actual	$\Delta t_{1/2}$	Mean	τ	r^2 xln(0.607
		Radius		$\Delta t_{1/2}$		<i>l/r</i>)
	(mm)	(mm)	(s)	(s)	(s)	(mm ²)
1	0.3	0.19	3.89	3.913	5.646	0.117
			3.97			
			3.88			
2	0.5	0.28	7.69	7.617	10.989	0.224
			7.57			
			7.59			
3	0.7	0.35	8.77	8.82	12.73	0.322
			8.81			
			8.88			
4	0.9	0.45	12.4	11.70	16.88	0.482
	48'''		11.33		ЛП	/
			11.38			/

for each diameter (4): < 3 : 0.1 pts

1

>=3:0.25 pts (max 1.0 pts)

Positive monotonic trend for τ vs. diameter from 0.3 to 0.9 mm with $\tau = 5$ to 20 sec : 0.4 pts

YOGYAKARTA- INDONESIA 16 - 24 IIII Y 2017

A.12 1 pts

Determine the air viscosity μ_A

Correct unit: 0.05

Obtaining result with linear regression or plot: 0.25 pts

We have: $\tau = b r^2 \ln \left(0.607 \times \frac{l}{r} \right)$, where: $b = \frac{2}{3} \frac{\rho}{\mu_A}$. We performed linear regression y = a + b x, with $y = \tau$ and

 $x = r^2 \ln \left(0.607 \times \frac{l}{r} \right)$. We obtain: $b = 29.02 \text{ s/mm}^2$.

$$\mu_A = \frac{2}{3} \frac{\rho}{b} = 38.6 \ 10^{-6} \text{ Pa.s} \quad (1 \text{ Pa.s} = 1 \text{ kg/m s})$$

Note that this is about 2.1x the actual viscosity of air of 18.2μ .Pa.s. The discrepancy is due to the ellipsoidal

Result μ_A (x10⁻⁶ Pa.s): 20 - 60 : 0.7 pts

10 - 80 : 0.4 pts 1 - 100 : 0.1 pts

Experimental Question

1

page 6 of 7

approximation of the Stokes drag (vs. the actual cylindrical	
shape of the rod) and the proximity effect of the rod to the	
magnet (wall effect). Another factor is the crude nature of our	
manual τ determination. See Ref. [1], pg. 8.	

B. <u>SENSOR APPLICATION OF THE PDL TRAP</u>

Student Code

5. PDL Trap Seismometer (0.5 pts)

Quest ion	Answer	Marks
B.1 0.2 pts	Which diameter of rod do you choose? To obtain the lowest acceleration noise floor "a _n " we should choose the largest diameter graphite i.e. 0.9 mm, because their damping time is the longest and the mass is the largest.	Correct answer: 0.2 pts
B.2 0.3 pts	Calculate the seismometer acceleration noise floor (an) for the rod of your choice! YOGYAKARTA-INDONESIA 16 - 24 JULY 2017	Correct unit: 0.1
pts	For HB/0.9 and length $l=8$ mm: We use $\tau=16.9$ s; and $T=298$ K, we have: $m_R=\rho \pi r^2 l=8.55 \text{x} 10^{-6} \text{ kg}$: $a_n=\sqrt{\frac{4k_BT\omega_0}{Qm_R}}=\sqrt{\frac{8k_BT}{\tau m_R}}=1.5 \text{x} 10^{-8} m/(s^2 Hz^{0.5})$	Correct answer: 0.2 pts

6. PDL Trap Tiltmeter (2 pts)

Quest ion	Answer	Marks
B.3 0.5 pts	Derive the relation theoretically between displacement Δz with the screw thread size S and the number of turns (N) . $k_z \Delta z = m g \sin \theta = m g N S / D \qquad \Delta z = \frac{m g S N}{k_z D}$ From Question 3, we also have $k_z = m \omega^2$: $\Delta z = \frac{g S}{\omega^2 D} N$	Correct expression: 0.5 pts Partial credit $k_z \Delta z = m g \sin \theta : 0.2$
B.4 1.25 pts	By turning the screw slowly, determine the rod displacement Δz vs. the number of screw turns (N). Determine the thread size S	Correct label and unit: 0.1 pts

Experimental Question

page 7 of 7

We measured the distance between screws: D = 22 cm, and we used the period from Q3: $T_z = 1.23 \text{ s}$

Student Code

Δz	ф	N		
(mm)		(turn)		
0	0	0		
0.5	135	0.375		
1	270	0.75		
1.5	450	1.25		
2	585	1.625		
2.5	720	2.0		
3	855	2.375		
3.5	945	2.625		

By performing linear regression: y = a + b x

We have b = 1.287 mm/turns : $S = \frac{b\omega^2 D}{c} = 0.75$ mm/turn.

This is reasonably close to the actual value of the thread size: S $= (0.8\pm0.1) \text{ mm/turn.}$

B.5	When the ground tilt changes we want the graphite rod to go to	
0.25	equilibrium as fast as possible (instead of sustaining very long	
pts	oscillation) to allow easy reading. What is the ideal Q factor	
	for a tiltmeter?	

Distance between screws: 22.8 < D < 22.2 cm: 0.1 pts

Number of correct data:

< 3 sets : 0 pts3-5 sets: 0.15 pts >5 sets : 0.25 pts

Obtaining result with linear regression or plot: 0.2 pts

Result:

0.7 < S < 0.9 : 0.55 pts0.5 < S < 1.1 : 0.15 pts

Correct unit for S: 0.05

Correct Q: 0.25 pts

We need critical damping thus: Q = 0.5

REFERENCES:

- [1] Gunawan, O. & Virgus, Y. The one-dimensional camelback potential in the parallel dipole line trap: Stability conditions and finite size effect. J. Appl. Phys. 121, 133902, (2017). DOI:10.1063/1.4978876.
- [2] Gunawan, O., Virgus, Y. & Fai Tai, K. A parallel dipole line system. Appl. Phys. Lett. 106, 062407, (2015). DOI: 10.1063/1.4907931.