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Marking Scheme

Cosmic Inflation

A. Expansion of Universe
Question A.1

For any test mass m on the boundary of the sphere,

13

0.2

Therefore, we have 4; = -

mR(t) = —GmM,/R?(t) (A.1.1)
where M, is mass portion inside the sphere
Multiplying equation (A.1.1) with R and integrating it gives 0.6
ffe@ =1 pe= Sy,

dt 2 R
where A is a integration constant
Taking M, = %nR3(t)p(t), and R = a R, 0.2

a\>  8nG 24 0.2
(‘) =3 p(t) + RZa?(0)
&G 0.1

"Question A.2

Answer -
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The 2" Friedmann equation can be obtained from the 1% law of 0.1
thermodynamics :
dE = —pdV + dQ.
For adiabatic processes dE + pdV = 0 and its time derivativeis E +p V = 0.1
0.
For the sphere V =V (3 d/a) 0.1
Its total energy is E = p(t)V (¢) c? 0.2
N U A 0.1

Therefore E = (p +3 Z) Ve
It yields 0.2

. pya

p+ 3 (,0 + C_2> a =0
Therefore, we have 4, = 3 0.1
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Question A.3

Interpreting p(t)c? as total energy density, and substituting PO _ p(t) 0.1

c2

in to the 2" Friedmann equation yields:

a
p+3p(1+w)a=0

p < g 3w+ 0.2
(i) In case of radiation, photon as example, the energy is given by E, = 0.3
hv = hc/A then its energy density p, = % o« a~*sothat w, = g
2
(i) In case of nonrelativistic matter, its energy density nearly p,, = m;’/c [ 0.3

a3 since dominant energy comes from its rest energy myc?, so that w,,, =
0

(iii) For a constant energy density, let say €, = constant, €, « a® so that 0.3
Wp = —1.
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Question A.4

(i) In case of k = 0, for radiation we have p,a* = constant. So by comparing
the parameters values with their present value, p,(t)a*(t) = p,oas,

() =" o ()"

1
[ada =§a2 +K = (% proag)z t.

13

0.2

Because a(t = 0) = 0,K = 0, then

1
1 - 1 1 1
a(t) = (2)2 (22 proad)’ t2 = (2H)z t 2.

1

where H, = (§Z—G ,0r0>E after taking ay = 1.

0.2

(ii) for non-relativistic matter domination, using p,,(£)a3(t) = ppmoa3, and
similar way we will get

2 1 2
3\3 /871G 3 2 3Hy\3 .2
a(®) = () (5% pmodt)” 5= (2)° 5.

1

where H, = (?_7_3{2 pmo)g.

0.4

(iii) for constant energy density,

Ina=Hyt+K'

1

Where K’ is integration constant and H, = (8—7:-;- pA)Z. Taking condition a, =

1,

In (aio) = Hy(t — t5)

a(t) s eHO(t_tO)

0.4
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Question A.5

13

‘ .

v

Condition for critical energy condition:

3H?

pc(t) = 817G

Friedmann equation can be written as

2

H?(t) = H*(HQ) — RZa2(0)

(a2 -1) = & (A5.1)

Question A.6

RS
2

Because ( )azH2 >0, then k=41 corresponds to O>1, k=-1

corresponds to Q < 1 and k = 0 correspondsto ) = 1

0.3
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B. Motivation To Introduce Inflation Phase and Its General Conditions
Question B.1

o

hat T 0.1

Equatlon (A.5.1) stWs t

Q-1) - RE L

2 52°
Ry a

In a universe dominated by non-relativistic matter or radiation, scale factor can 0.2

P
be written as a function of time as a = a, (;—t—) where p <1 (p = % for
0

- . 2 C
radiationand p = 3 for non-relativistic matter )

(Q—1) = k ¢20-P 0.2

Question B.2

For a period dominated by constant energy provides the solution a(t)
that @ = He''*
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Question B.3

i

13

Hubble radius)

Question B.4

Inflation period can be generated by constant energy period, therefore it is a 0.2
phase where w = —1 so that p = wpc? = —pc? (negative pressure).
Differentiating Friedmann equation leads to 0.4
8nG kc?
a? =— pa® ——-
3 P4 TR
= ox 8nG .. . 8nG . .
28 = —~ (pa® + 2paa) = % (-3 (p + C%) aa + 2paa).
a_  4nG N 3p)
a_ 3 (p c?
So that because during inflation p = —pc?, it is equivalent with condition d > 0.1
0 (accelerated expansion)
As a result, d =d(a)/dt = d(Ha)/dt >0 or d(Ha) '/dt < 0 (shrinking | 0.2

Answe

. . . ~dam) . .
Inflation condition can be written as % < 0, with H = a/a as such

d(aH)™  aH+aH _

1
s =——1-¢g<0=€e<1
i (@ o 9<0=c
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C. Inflation Generated by Homogenously Distributed Matter

Question C.1

Differentiating equations (4) and employing equétion 4 We cén get | A 0.3
. _ 1 . ee a_V . _ 1 - .2
ZHH = 3M2; [¢¢ + (a¢>) ¢] - 3M2, [-3H ¢7]
. 1 ¢p?
f=_12
2 My,
12
Therefore € = = (f > 0.1
2 M3 H

The inflation can occur when the potential energy dominates the particle’s 0.2
energy (¢? « V) such that H? ~ V/(3M2).

Slow-roll approximation: 3H¢ ~ —V’ 0.1
Implies 0.3
‘ ~ MTSI(VV)Z (C.1.2)
we also have 0.4
3Hp +3Hp = —V"¢
6=t
Therefore
my ~ M5 (C.1.2)
dN = H dt = (5) dg ~ —M—};(V/V’) do (C13)| o3
@ = wr V)
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NOBTTHY OF
EDUCATION AND CULTURE

D. Inflation with A Simple Potential

Question D.1

i

Question D.2

From equations (C.1.1), (C.1.2) and (C.1.3) we can obtain 0.2

2
o1 1
N=—|— —+
Mpl n B

where £ is a integration constant. As N = 0 at ¢4 then § = g.

2

1 n
N=-|2 +
My 2n 4
M,1? 2(n—1) 0.2
= -1 p]:
_n? [Mpl]z . on 0.2
=201l “nZan
so that 0.1
16n
r=16£—n_4N
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(—0.27) and for n = —5 leads a contradiction 0 < (—0.2).

2(n + 2) 0.1
ng=1+2n,—-6e=1——--—=-
To obtain the observational constraint ng = 0.968 we need n = —5.93 which 0.1
is inconsistent with the condition r < 0.12. There is no a closest integer n that
can obtains r < 0.12. As example, for n = —6 leads a contradiction 0 <
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