

## Earthquake, Volcano and Tsunami

### A. Merapi Volcano Eruption

| Question | Answer                                                                                                | Marks   |
|----------|-------------------------------------------------------------------------------------------------------|---------|
| A.1      | Using Black's Principle the equilibrium temperature can be obtained                                   | 0.5 pts |
|          | $m_w c_{vw} (T_e - T_w) + m_m c_{vm} (T_e - T_m) = 0$                                                 |         |
|          | Thus,                                                                                                 |         |
|          | $T_e = \frac{m_w c_{vw} T_w + m_m c_{vm} T_m}{m_w c_{vw} + m_m c_{vm}}$                               |         |
| A.2      | For ideal gas, $p_e v_e = RT_e$ , thus                                                                | 0.3 pts |
|          | $p_{e} = \frac{R}{v_{e}} \frac{m_{w} c_{vw} T_{w} + m_{m} c_{vm} T_{m}}{m_{w} c_{vw} + m_{m} c_{vm}}$ |         |
|          |                                                                                                       |         |
| A.3      | The relative velocity $u_{rel}$ can be expressed as                                                   | 0.5 pts |
|          | $u_{rel} = \kappa  p^{\alpha} V^{\beta} m^{\gamma}$                                                   |         |
|          | where $\kappa$ is a dimensionless constant. Using dimensional analysis, one can obtain that           |         |
|          | $LT^{-1} = M^{\alpha + \gamma} L^{-\alpha + 3\beta} T^{-2\alpha}$                                     |         |
|          | $\alpha + \gamma = 0$                                                                                 |         |
|          | $-\alpha + 3\beta = 1$                                                                                |         |
|          | $-2\alpha = -1$                                                                                       |         |
|          | Therefore                                                                                             |         |
|          | $u_{rel} = \kappa  p^{1/2} V^{1/2} m^{-1/2}$                                                          | 8       |
|          | Total score                                                                                           | 1.3 pts |

## B. The Yogyakarta Earthquake

| Question | Answer                                                                                                                     | Ma    | rks |
|----------|----------------------------------------------------------------------------------------------------------------------------|-------|-----|
| B.1      | From the given seismogram, fig. 2                                                                                          | 0.3   | 0.5 |
|          | x10 <sup>3</sup> m/s                                                                                                       | pts   | pts |
|          | 5.0                                                                                                                        |       |     |
|          | 2.5                                                                                                                        |       |     |
|          | 0<br>-2.5<br>-5.0<br>-7.5                                                                                                  |       |     |
|          | 22:54:00 22:54:05                                                                                                          |       |     |
| ,        | 22:54:045                                                                                                                  |       |     |
|          | One can see that the P-wave arrived at 22:54:045 or $(4.5 - 5.5)$ seconds after the earthquake occurred at the hypocenter. |       |     |
| -        | Since the horizontal distance from the epicenter to the seismic station                                                    | 0.1   |     |
|          | in Gamping is 22.5 km, and the depth of the hypocenter is 15 km, the                                                       | pts   |     |
|          | distance from the hypocenter to the station is                                                                             |       |     |
|          | $\sqrt{22.5^2 + 15^2}$ km = 27.04 km                                                                                       |       |     |
|          | Therefore, the P-wave velocity is                                                                                          | 0.1   |     |
|          | $v_P = \frac{27.04 \text{ Km}}{4.7 \text{ s}} = 5.75 \text{ Km/s}$                                                         | pts - |     |
|          |                                                                                                                            |       |     |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar | ks   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| B.2      | Direct wave:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 | 0.6  |
|          | $t_{\text{direct}} = \frac{SR}{v_1} = \frac{\sqrt{500^2 + 15^2}}{v_1} = \frac{502.021}{5.753} \text{ s} = 86.9 \text{ s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pts | pts  |
|          | As in the case of an optical wave, the Snell's law is also applicable to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4 |      |
|          | the seismic wave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pts |      |
|          | Yogyakarta Denpasar (Epicenter) 500 Km (DNP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
|          | Hypocenter $x_1$ $x_2$ $x_3$ $x_4$ $x_4$ $x_5$ $x_4$ $x_5$ $x_4$ $x_5$ $x_4$ $x_5$ $x_4$ $x_5$ $x_5$ $x_4$ $x_5$ |     | . ,. |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |
|          | Reflected wave: $t_{\text{reflected}} = \frac{SC}{v_1} + \frac{CR}{v_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   |      |
|          | $SC\cos\varphi + CR\cos\varphi = 500 \Rightarrow \cot\varphi = \frac{500}{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |
|          | $t_{\text{reflected}} = \frac{45}{v_1 \sin \varphi} = 87.3 \text{ s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |

T2

| Question | Answer                                                                                                                                          | Ma  | rks |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| B.3      | Velocity of P-wave on the mantle. The fastest wave crossing the mantle                                                                          | 0.4 | 1.2 |
|          | is that propagating along the upperpart of the mantle. From the figure                                                                          | pts | pts |
|          | on refracted wave, we obtain that                                                                                                               |     |     |
|          | $\frac{\sin \theta}{v_1} = \frac{1}{v_2}; \qquad \sin \theta = \frac{v_1}{v_2}; \qquad \cos \theta = \sqrt{1 - \left(\frac{v_1}{v_2}\right)^2}$ |     |     |
|          | $\frac{1}{v_1} = \frac{1}{v_2},  \sin v = \frac{1}{v_2},  \cos v = \sqrt{1 - \left(\frac{1}{v_2}\right)}$                                       |     |     |
|          | $\cos \theta = \frac{15}{x_1};  x_1 = \frac{15}{\cos \theta} \text{ km};  x_2 = \frac{30}{\cos \theta} \text{ km}$                              |     |     |
|          | $x_3 = 500 - (x_1 + x_2)\sin\theta = 500 - 45\tan\theta$                                                                                        |     |     |
|          | The total travel time:                                                                                                                          | 0.5 |     |
|          | $t = \frac{x_1 + x_2}{v_1} + \frac{x_3}{v_2} = \frac{45}{v_1 \cos \theta} + \frac{500}{v_2} - \frac{45 \tan \theta}{v_2}$                       | pts |     |
|          | $t\cos\theta = 45u_1 + 500u_2\cos\theta - 45u_2\sin\theta$                                                                                      |     |     |
| ,        | where $u_1 = 1/v_1$ and $u_2 = 1/v_2$ . Arranging the equation, we get                                                                          |     |     |
|          | $\left(500^2 + 45^2\right)u_2^2 - 2t \ 500u_2 + t^2 - 45^2 \ u_1 = 0$                                                                           |     |     |
|          | whose solution is                                                                                                                               |     |     |
|          | $v_2 = \frac{500tv_1^2 + 45v_1\sqrt{(45^2 + 500^2) - t^2v_1^2}}{t^2v_1^2 - 45^2}$                                                               |     |     |
|          | x10 <sup>-5</sup> m/s Station DNP                                                                                                               | 0.3 |     |
|          | 8-                                                                                                                                              | pts |     |
|          | 4                                                                                                                                               |     |     |
|          | 0                                                                                                                                               |     |     |
|          | -8                                                                                                                                              |     |     |
|          | -12                                                                                                                                             |     |     |
|          | 22:55:05 22:55:15                                                                                                                               |     |     |
|          | From the seismogram, we know that the fastest wave arrived at                                                                                   |     |     |
|          | Denpasar station at 22:55:15, which is $t = 75$ s from the origin time of                                                                       |     |     |
|          | the earthquake in Yogyakarta. Thus                                                                                                              |     |     |
|          | $v_2 = 7.1 \text{ km/s}$                                                                                                                        |     |     |
| L        | 4                                                                                                                                               |     | L   |

| Question | Answer                                                                                                                                                                        | Ma         | rks |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| B.4      | By using Snell's law and defining $p = \sin \theta / v$ and $u = 1/v$ , we obtain                                                                                             | 0.2        | 1.4 |
|          | $p \equiv u(0)\sin\theta_0 = u(z)\sin\theta;$ $\sin\theta = \frac{p}{u(z)}$                                                                                                   | pts        | pts |
|          | where $u(z) = 1/v(z)$ and $\theta_0$ is the initial angle of the seismic wave direction.                                                                                      | 0.5<br>pts |     |
|          | $\frac{dx}{ds} = \sin \theta = \frac{p}{u(z)}; \qquad \frac{dz}{ds} = \cos \theta = \sqrt{1 - \left(\frac{p}{u(z)}\right)^2}$                                                 |            |     |
|          | $\frac{dx}{dz} = \frac{dx}{ds}\frac{ds}{dz} = \frac{p}{u}\frac{u}{\left(u^2 - p^2\right)^{1/2}} = p/\left(u^2 - p^2\right)^{1/2}$                                             |            |     |
|          | $x = \int_{z_1}^{z_2} \frac{p}{(u^2 - p^2)^{1/2}} dz$                                                                                                                         |            |     |
|          | $\frac{dz}{dz}$                                                                                                                                                               | 0.7<br>pts |     |
|          | Illustration for the direction of wave                                                                                                                                        |            |     |
|          | The distance X is equal to twice the distance from epicenter to the turning point. The turning point is the point when $\theta$ = 90°. Thus                                   |            |     |
| *        | $p = u(z_t) = \frac{1}{v_0 + az_t};  z_t = \frac{1 - pv_0}{ap}$                                                                                                               |            |     |
|          | $X = 2\int_{0}^{z_{1}} \frac{p(v_{0} + az)}{(1 - p^{2}(v_{0} + az)^{2})^{1/2}} dz = \frac{2}{ap} \left( \sqrt{1 - p^{2}(v_{0} + az)^{2}} - \sqrt{1 - p^{2}v_{0}^{2}} \right)$ |            | -   |

| Question | Answer                                                                                                                                                                            | Ma  | rks      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| B.5      | For the travel time, $dt = \frac{ds}{v(z)}$ ; $\frac{dt}{ds} = u(z)$ .                                                                                                            | 1.0 | 1.0      |
|          | v(z) ds                                                                                                                                                                           | pts | pts      |
|          | Thus                                                                                                                                                                              |     | ,        |
|          | $\frac{dt}{dz} = \frac{dt}{ds}\frac{ds}{dz} = \frac{u^2}{(u^2 - p^2)^{1/2}}$                                                                                                      |     |          |
|          | $\frac{1}{dz} - \frac{1}{ds} \frac{1}{dz} - \frac{1}{(u^2 - p^2)^{1/2}}$                                                                                                          |     |          |
|          | and therefore                                                                                                                                                                     |     |          |
|          | $T = 2\int_{0}^{z_{t}} \frac{u^{2}}{(u^{2} - p^{2})^{1/2}} dz = 2\int_{0}^{z_{t}} \frac{1}{(v_{0} + az)} \frac{1}{(1 - p^{2}(v_{0} + az)^{2})^{1/2}} dz$                          |     |          |
| B.6      | The total travel time from the source to the Denpasar can be calculated                                                                                                           | 0.6 | 1.0      |
|          | using previous relation                                                                                                                                                           | pts | pts      |
| ÷        | $T(p) = 2\int_{0}^{z_{1}} \frac{u^{2}(z)}{\left(u^{2}(z) - p^{2}\right)^{1/2}} dz$                                                                                                | .eo | -        |
|          | Which is valid for a continuous $u(z)$ . For a simplified stacked of                                                                                                              |     |          |
|          | homogeneous layers (Figure F), the integral equation became a                                                                                                                     | ,   |          |
|          | summation                                                                                                                                                                         |     |          |
|          | $T(p) = 2\sum_{i}^{N} \frac{u_{i}^{2} \Delta z_{i}}{\left(u_{i}^{2} - p^{2}\right)^{1/2}}$                                                                                        |     |          |
|          | $T(n) = 2 - \frac{u_1^2 \Delta z_1}{1 + 2} + 2 - \frac{u_2^2 \Delta z_2}{1 + 2} + 2 - \frac{u_3^2 \Delta z_3}{1 + 2}$                                                             | 0.4 |          |
|          | $T(p) = 2 \frac{u_1^2 \Delta z_1}{(u_1^2 - p^2)^{\frac{1}{2}}} + 2 \frac{u_2^2 \Delta z_2}{(u_2^2 - p^2)^{\frac{1}{2}}} + 2 \frac{u_3^2 \Delta z_3}{(u_3^2 - p^2)^{\frac{1}{2}}}$ | pts |          |
|          | $= \frac{2 \times (0.1504)^2 \times 6}{(0.1504^2 - 0.143^2)^{\frac{1}{2}}} + \frac{2 \times (0.1435)^2 \times 9}{(0.1435^2 - 0.143^2)^{\frac{1}{2}}}$                             |     |          |
|          | $(0.1504^2 - 0.143^2)^{\frac{1}{2}} (0.1435^2 - 0.143^2)^{\frac{1}{2}}$                                                                                                           |     |          |
|          | $+\frac{2\times(0.1431)^2\times15}{(0.1431^2-0.143^2)^{\frac{1}{2}}}$                                                                                                             |     |          |
|          | $(0.1431^2 - 0.143^2)^{\frac{1}{2}}$                                                                                                                                              |     |          |
|          | = 151.64 second                                                                                                                                                                   |     |          |
|          | Note that the actual travel time from the epicenter to Denpasar is 75 seconds. By varying the parameters of velocity and depth up to suitable                                     |     |          |
|          | value of observed travel time, physicist can know Earth structure.                                                                                                                |     |          |
|          | Total score                                                                                                                                                                       |     | 5.7      |
|          |                                                                                                                                                                                   |     | pts      |
| L        |                                                                                                                                                                                   |     | <u> </u> |

#### C. Java Tsunami

| C. | Java Tsi    | unamı                                                                                   |     |     |
|----|-------------|-----------------------------------------------------------------------------------------|-----|-----|
| Q  | uestion     | Answer                                                                                  | Ma  | rks |
|    | C.1         | The center of mass of the raised ocean water with respect to the ocean                  | 0.5 | 0.5 |
|    |             | surface is h/2. Thus                                                                    | pts | pts |
|    |             | $h^2 \rho \lambda L q$                                                                  |     |     |
|    |             | $E_P = \frac{h^2 \rho \lambda Lg}{4}$                                                   |     |     |
|    |             | 4                                                                                       |     |     |
|    |             | where $ ho$ is the ocean water density.                                                 |     |     |
|    | C.2         | Considering a shallow ocean wave in Fig. 5, the whole water (from the                   | 0.7 | 1.2 |
|    |             | surface until the ocean floor) can be considered to be moving due to the                | pts | pts |
|    |             | wave motion. The potential energy is equal to the kinetic energy.                       |     |     |
|    |             | $\frac{1}{4}\rho\lambda h^2 Lg = \frac{1}{4}\rho dL\lambda U^2$                         |     |     |
|    |             | Where $x = \lambda/2$ and $U$ is the horizontal speed of the water component.           |     |     |
|    |             | The water component that was in the upper part $hL\frac{\lambda}{2}$ should be equal to |     |     |
|    |             | the one that moves horizontally for a half of period of time $\tau/2$ , i.e.            |     |     |
|    |             | $hL \lambda/2 = dLU \tau/2.$                                                            |     |     |
|    |             | Thus we have                                                                            | -   |     |
|    |             | $h\lambda$                                                                              |     |     |
|    |             | $U = \frac{h\lambda}{\tau d}$                                                           |     |     |
|    |             | <del></del>                                                                             |     |     |
|    |             | Accordingly,                                                                            | 0.5 |     |
| -  |             |                                                                                         | pts |     |
| -  |             | $	au = rac{\lambda}{\sqrt{gd}}$                                                        | †   |     |
| l  |             | Thus                                                                                    |     |     |
| l  |             | $\lambda$ —                                                                             |     |     |
|    |             | $v=rac{\lambda}{	au}=\sqrt{gd}$                                                        |     |     |
|    | C.3         | Using the argument that the wave energy density is proportional to its                  | 1.3 | 1.3 |
|    |             | amplitude $E = kA^2$ with A is amplitude and k is a proportional constant               | pts | pts |
|    | ,           | Because the energy flux is conserve, then                                               |     |     |
|    |             | $Eva = E_0v_0a$ for an area $a$ where the wave flow though.                             |     |     |
|    |             | Then,                                                                                   |     |     |
|    |             | $kA^2\sqrt{gd} = kA_0^2\sqrt{gd_0}$                                                     |     |     |
|    |             | $(d_{-})^{\frac{1}{4}}$                                                                 |     |     |
|    |             | $A = A_0 \left(\frac{d_0}{d}\right)^{\frac{1}{4}}$                                      |     |     |
|    |             | (Therefore the tsunami wave will increase its amplitude and become                      |     |     |
|    |             | narrower as it approaches the beach).                                                   |     |     |
|    | - 1.        | Tigitower as it approaches the beach).                                                  |     |     |
|    | Total score |                                                                                         | 3.0 |     |
|    |             | pts                                                                                     |     |     |
|    |             |                                                                                         |     |     |

# Solutions/ Marking Scheme



T2

Total Score for Problem T2:

Section A:

1.3 points

Section B:

5.7 points

Section C:

3.0 points

Total: 10 points