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Cosmic Inflation

Due to the relative movement of galaxies observed from the earth, the wavelength of visible spectrum of
a particular galaxy differs from its original wavelength, which is known as the electromagnetic Doppler
effect. One expects, for a collection of galaxies, to a random distributions of wavelength shifts: some
positive (red shift) and some negative (blue shift). However, observations show that all, expect for a
nearby group of galaxies, are red shifted. This must be true even if the observation take place on different
point in the universe. As a conclusion, our universe must be expanding. On the other hand local
irregularity of the universe can be neglected on scales of more than 100 Mpc, in which 1 pc = 3.26 light-
years. Averaged over large scales, the clumpy distribution of galaxies becomes more and more isotropic
(independent of direction) and homogeneous (independent of position). Therefore we can assume the
universe as a matter having a uniform mass density p and is expanding.

A. Expansion of Universe

For a simple model of our universe, let us consider an expanding uniform-density sphere embedded in a
medium of a much larger sphere with the same density. Let say at some time, the radius of the smaller

sphere is R. To express the expansion of the sphere, the time dependency of the radius R(f) can be
expressed by scale factor a(z), that is R(¢) = a(t)Rj.

Using Newton'’s law of gravity to evaluate velocity of a mass element on the sphere boundary according
the model of our universe, one can obtain a set of Friedmann equations:

a\2 _ ke?
(5) =Aip() - FeRTn ()
where k a dimensionless constant, and c is velocity of light.
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A1 || Determine the constant A1 in the equation (1) || 1.3 pt.

The discussion so far is non-relativistic. But in fact, it can be extended to a relativistic system by

reinterpreting ,o(t)c2 as total energy density (excluding the gravitational potential energy). In this
relativistic system derives the 2nd Friedmann equation:

pra(p+ ()4 =0

using the 1st law thermodynamics of an adiabatic system, where P denotes the pressure on the
sphere.

A2 || Determine the constants A in the equation (2) || 0.9 pt.

To solve Egs. (1) and (2), one should assume a relation p = p(p), such as p(t)/c2 = wp(t), where w is a
constant. There is also a factor H = d/a being called Hubble parameter. The present values of parameters
are usually symbolized by subscript 0 such as %y, po, Ho, ao and so on. For simplicity, we take ap = 1.

Universe is believed to start from a big explosion called Big-Bang that produces radiation of relativistic
particles. During its expansion, the universe is cooling down and the particles in it become non-relativistic.
However, the recent observations clarify that the present universe is dominated by cosmological constant
energy density. For the case of photon, as the universe is expanding, the photon’'s wavelength expands
proportionally to the scale factor.

For each of the following three cases determine the resulting value of w: (i) a 12 ot
A.3 || universe filled only with radiation (i.e. photon energy), (ii) a universe filled only with || P

non-relativistic matter and (iii) a universe with constant energy density.

In the case of k = 0, find a(¢) for each case of (i) to (iii) being mentioned in A.3. Use 12 ot
A.4 || the initial condition a(t = 0) = O for case (i) and (ii), and use the condition ag = 1 for || Pt

case (iii).

Constant k in Eq. (1) refers to classification of spatial geometry of the universe. Its value can be k = +1 for
positive-curvature universe (closed), k =0 for flat universe (infinite), and k = —1 for negative-curvature
universe (open, infinite). Let define a density ratio £ = p/p., where ,OCC2 =H?A| is critical energy
density. Note that A1 is obtained from problem A.1.
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A5 || Express k in Eq.(1) in terms of Q, H, a, and Ro. || 0.1 pt.

A.6 || Find a range for €2 that corresponds to each value of Kk = +1, k=0 and k = —1. || 0.3 pt.

B. Motivation To Introduce Inflation Phase and Its General Conditions

The observation of cosmic microwave background radiation (CMB) suggests that our present universe is
approximately flat. The problem is that if this is true then the present universe should start from exactly
flat early universe, otherwise any deviation from the flatness will eventually grow over time and spoil the
present flatness.

Find (Q(r) — 1) as a function of time for the universe when it is dominated by
radiation or non-relativistic matter (see problem A.3).

0.5 pt.

To solve the problem, at some early time in its history, the universe should undergo a constant energy
density domination period which leads to an exponential expansion so called inflation period.

For this constant energy density domination period, find (€2(¢) — 1) as a function of

time. Assume that (Q2(f) — 1) < 1. 0.3 pt.

Show that condition for inflation implies several following conditions: negative
B.3 || pressure, accelerated expansion (a > 0), and decreasing Hubble radius || 0.9 pt.
(d(aH)™'/dt < 0).

Show that the condition of decreasing Hubble radius can be expressed in terms of

parameter € = —H/H? ase < 1. 0.2 pt.

Inflation occurs as long as € < 1 and then ends when € = 1. We can define e-folding number N, such that
dN =dIna = Hdt and N = 0 at the end of inflation.

C. Inflation Generated by Homogenously Distributed Matter

As an example of simple physical system that can generate period of inflation is a universe dominated by
homogenously distributed matter. This kind of matter is called inflaton and can be characterized by a
function ¢ ().

The dynamical equation of the matter can be expressed as
b+3HP=-V", 3)

where V = V() is a potential function and V' = %. The Hubble parameter satisfies
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2
H? = o347+ V). )

pl

with Mp; is a constant called the reduced Planck mass. Inflation phase occurs during domination of

potential energy V over kinetic energy ¢ /2 for sufficient time such that ¢ term in equation (3) can be
neglected. This condition is called slow-roll approximation.

The quantitiese andyy = 6 + €, where 6 = —cf)/(Hé{)), are called ‘slow-roll’ parameters.

Estimate parameter €, parameter 77y, dN/d¢ in terms of potential V(¢) and its first
and second derivative (V' and V”).

1.7 pt.
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D. Inflation with A Simple Potential

Predictions of any inflation model should be compared to observational constraints from CMB as follow n
= 0.968 + 0.006 and r < 0.12, where r=16¢ and ny=1+ 25y — 6¢ are evaluated at ¢ = ¢ for
inflation model being generated by a dominant matter. Assume that potential of matter takes a simple

n
form V(¢) = A4<Mipl> where n is any integer and A is a constant.

D.1 || Calculate @ena at the end of inflation. 0.5 pt.

Express r and 15 in terms of e-folding number N and integer 7. Estimate the value
D.2 . . . . 0.9 pt.
of n that is closest to observational values r and 7;. Take N = 60 in your calculation.
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