

## 2.1 The dependence of the solar cell current on the distance to the light source

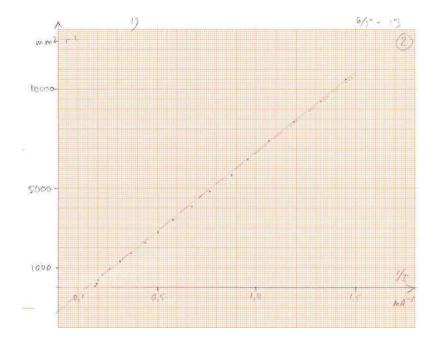
| I(r) = | $I_a$ |                   |
|--------|-------|-------------------|
| I(I) = | 1     | $r^2$             |
|        | T     | $+\overline{a^2}$ |

| 2.1a | Measure $I$ as a function of $r$ , and set up a table of your measurements.      | 1.0 |
|------|----------------------------------------------------------------------------------|-----|
| 2.1b | Determine the values of $I_a$ and $a$ by the use of a suitable graphical method. | 1.0 |

| slot # | r     | Ι     | 1/I   | r^2   |
|--------|-------|-------|-------|-------|
|        | mm    | mA    | 1/mA  | mm^2  |
| 3      | 9.0   | 5.440 | 0.184 | 81    |
| 4      | 14.5  | 5.290 | 0.189 | 210   |
| 5      | 20.0  | 5.010 | 0.200 | 400   |
| 6      | 25.5  | 4.540 | 0.220 | 650   |
| 7      | 31.0  | 3.840 | 0.260 | 961   |
| 8      | 36.5  | 3.230 | 0.310 | 1332  |
| 9      | 42.0  | 2.730 | 0.366 | 1764  |
| 10     | 47.5  | 2.305 | 0.434 | 2256  |
| 11     | 53.0  | 1.985 | 0.504 | 2809  |
| 12     | 58.5  | 1.730 | 0.578 | 3422  |
| 13     | 64.0  | 1.485 | 0.673 | 4096  |
| 14     | 69.5  | 1.305 | 0.766 | 4830  |
| 15     | 75.0  | 1.140 | 0.877 | 5625  |
| 16     | 80.5  | 1.045 | 0.957 | 6480  |
| 17     | 86.0  | 0.930 | 1.075 | 7396  |
| 18     | 91.5  | 0.840 | 1.190 | 8372  |
| 19     | 97.0  | 0.755 | 1.325 | 9409  |
| 20     | 102.5 | 0.690 | 1.449 | 10506 |

$$I\left(1 + \frac{r^2}{a^2}\right) = I_a$$
$$r^2 = I_a a^2 \cdot \frac{1}{l} - a^2$$

$$a^{2} = 12 \quad \text{mm}^{2} \pm 100 \text{ mm}^{2},$$
  

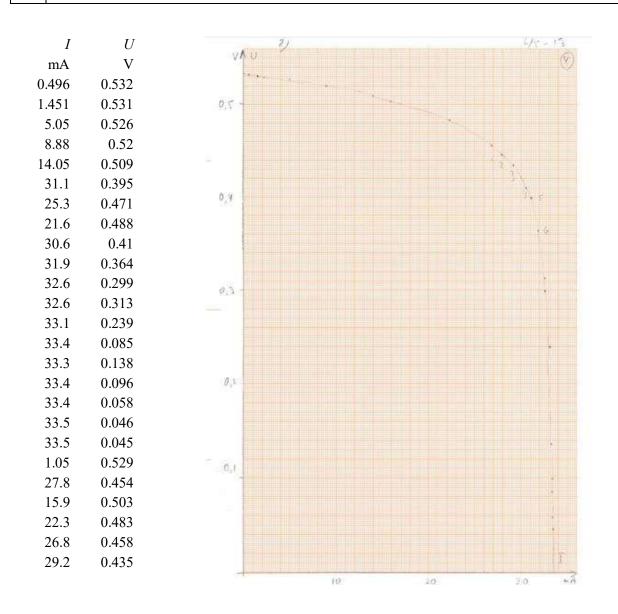

$$a = 35 \text{ mm} \pm \pm 2 \text{ mm}$$
  

$$I_{a}a^{2} = \frac{10870-0}{1.50-0.15} \cdot \frac{\text{mm}^{2}}{\text{mA}^{-1}} = 8051.85 \dots \text{m}^{-2}\text{mA}$$
  

$$I_{a} = \frac{8051.85 \frac{\text{mm}^{2}}{\text{mA}^{-1}}}{1200 \text{ mm}^{2}} = 6.7 \text{ mA} \pm 0.5 \text{ mA}$$
  

$$(I_{a}a^{2})_{\text{min}} = \frac{10700-0}{1.50-0.14} \cdot \frac{\text{mm}^{2}}{\text{mA}^{-1}} = 7867.6 \dots \text{m}^{-2}\text{mA}$$
  

$$\rightarrow I_{a,\text{max}} = \frac{(I_{a}a^{2})_{\text{min}}}{a^{2}_{\text{min}}} = \frac{7867.6 \text{ mm}^{2}\text{mA}}{1100 \text{ mm}^{2}} = 7.2 \text{ mA}$$




Page 1 of 12



## 2.2 Characteristic of the solar cell

| 2.2a | Make a table of corresponding measurements of U and I. | 0.6 |
|------|--------------------------------------------------------|-----|
| 2.2b | Graph voltage as a function of current                 | 0.8 |

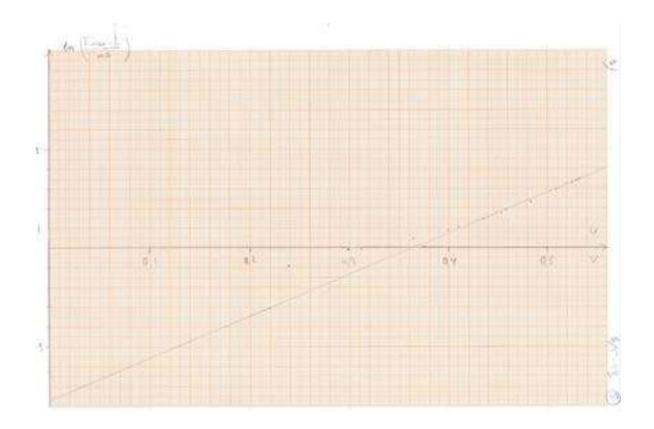




#### 2.3 Theoretical characteristic for the solar cell

| 2.3a | Use the graph from question 2.2b to determine $I_{\text{max}}$ .                                                                                             | 0.4 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.3b | Estimate the range of values of $U$ for which the mentioned approximation is good. Determine graphically the values of $I_0$ and $\eta$ for your solar cell. | 1.2 |

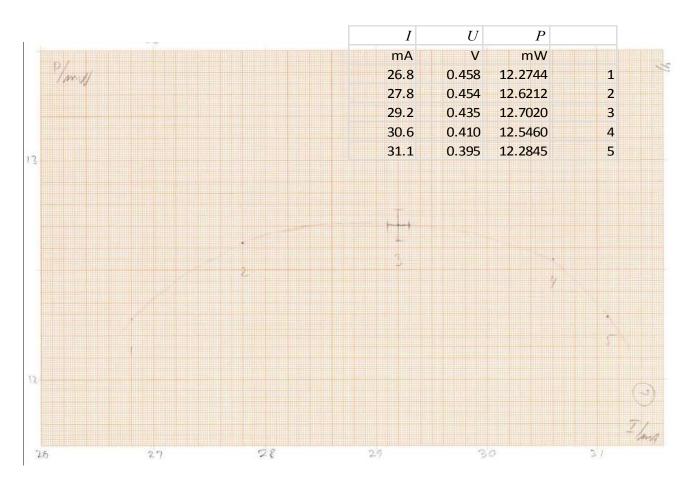
 $I = I_{\text{max}}$  for  $U = 0 \rightarrow I_{\text{max}} = 33.5 \text{ mA}$ 

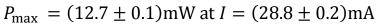

 $\eta k_B T < 4 \cdot 1.381 \cdot 10^{-2} \text{ J/K} \cdot 300 \text{ K} = 0.103 \text{ eV}$ 

$$I = I_{\max} - I_0 \left( \exp\left(\frac{eU}{\eta k_B T}\right) - 1 \right) \approx I_{\max} - I_0 \exp\left(\frac{eU}{\eta k_B T}\right)$$
  
for  $U > 0.4 V$  where  $\exp\left(\frac{eU}{\eta k_B T}\right) > \exp(4) \gg 1$ 

$$\ln\left(\frac{I_{\max} - I}{mA}\right) = \frac{e}{\eta k_B T} U + \ln\left(\frac{I_0}{mA}\right) \qquad \qquad \frac{e}{\eta k_B T} = \frac{4.03 - (-7.7)}{0.56 V} = 20.95 V^{-1}$$

$$I_0 = e^{-7.7} \text{mA} = 0.45 \ \mu A$$


$$\rightarrow \eta = \frac{e/(k_B T)}{20.95 \, \mathrm{V}^{-1}} = 1.85$$

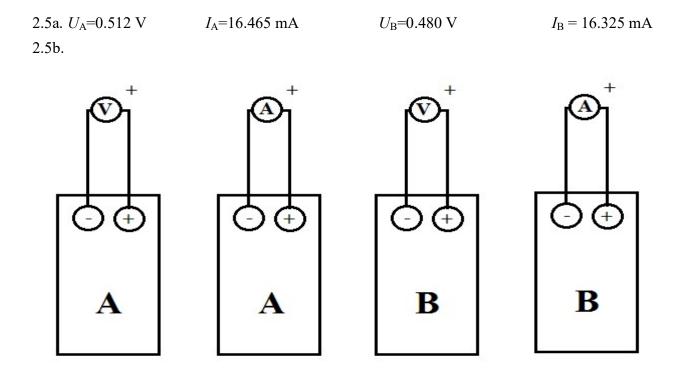





#### 2.4 Maximum power for a solar cell

| 2.4a | The maximum power that the solar cell can deliver to the external circuit is denoted $P_{\text{max}}$ . Determine $P_{\text{max}}$ for your solar cell through a few, suitable measurements. (You may use some of your previous measurements from question 2.2) |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2.4b | Estimate the optimal load resistance $R_{opt}$ , i.e. the total external resistance when the solar cell delivers its maximum power to $R_{opt}$ . State your result with uncertainty and illustrate your method with suitable calculations.                     |  |






 $R_{\rm opt} = \frac{P_{\rm max}}{I_{\rm opt}^2} = \frac{12.71 \,\mathrm{mW}}{(28.8 \,\mathrm{mA})^2} = (15.3 \pm 0.3) \,\Omega$ 



## 2.5 Comparing the solar cells

| 2.5a | Measure, for the given illumination:<br>- The maximum potential difference $U_A$ that can be measured over solar cell A.<br>- The maximum current $I_A$ that can be measured through solar cell A.<br>Do the same for solar cell B. | 0.5 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.5b | Draw electrical diagrams for your circuits showing the wiring of the solar cells and the meters.                                                                                                                                    | 0.3 |





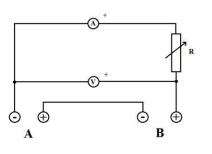
### 2.6 Couplings of the solar cells

Determine which of the four arrangements of the two solar cells yields the highest<br/>possible power in the external circuit when one of the solar cells is shielded with the<br/>shielding plate (J in Fig. 2.1).1.0

Draw the corresponding electrical diagram.

Two approaches:

<u>Approach 1:</u> use a constant setting of the variable resistor to simulate a constant external load.


<u>Approach 2:</u> use the hint given in the question and measure values of maximal U and maximal I independently (no variable resistor involved).

In the following only measurements for approach 1 are presented.

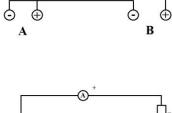
a.

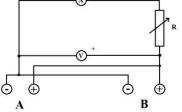
b.

c.



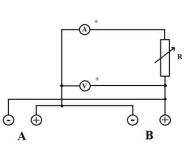
Unshielded (adjusting *R* for reasonable *P*) 13.10 mA; 0.794 V; 10.4 mW


A shielded: 0.37 mA; 0.022 V B shielded: 0.83 mA; 0.049 V


R like in a.

A shielded: 1.47 mA; 0.088 V B shielded: -2.82 mA; -0.170 V

R like in a.


A shielded: 6.89 mA; 0.415 V B shielded: 6.905 mA; 0.4165 V







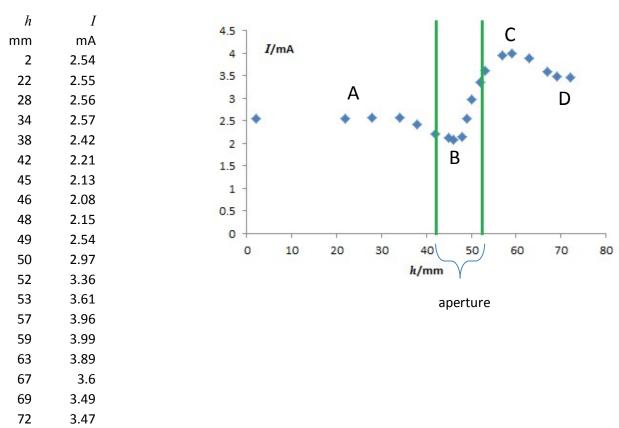
d.



*R* like in a.

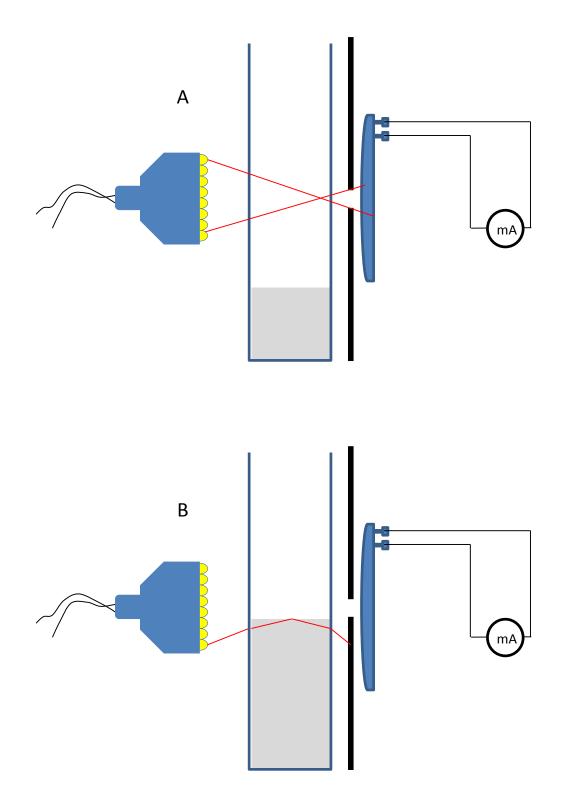
A shielded: 7.14 mA; 0.436 V B shielded: -7.76 mA; -0.474 V

Conclusion: Best power: Set-up d with B shielded. (Solar cell A slightly better than B).


(2.7 on next page)

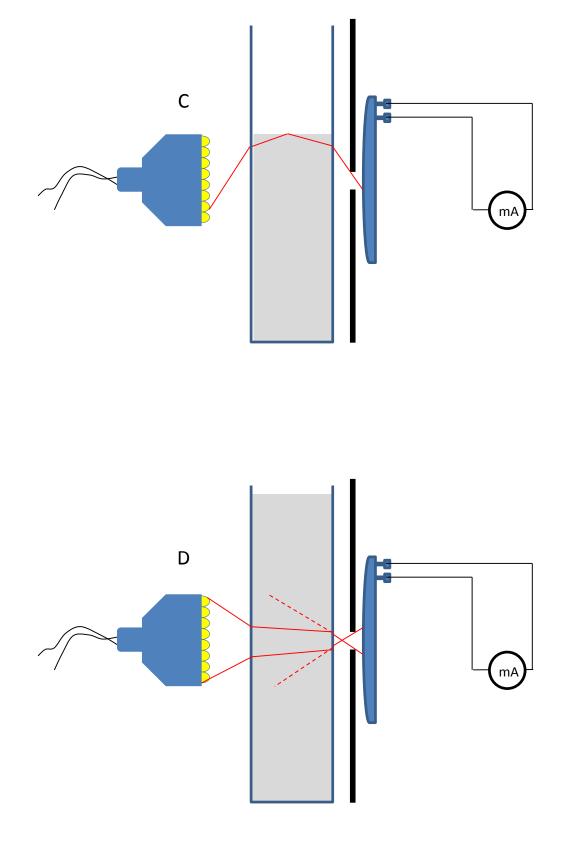


### 2.7 The effect of the optical vessel (large cuvette) on the solar cell current


| 2.7a | Measure the current $I$ , now as a function of the height, $h$ , of water in the vessel, see Fig. 2.8. Make a table of the measurements and draw a graph.                                                                                                                                                                                  | 1.0 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.7b | Explain with only sketches and symbols why the graph looks the way it does.                                                                                                                                                                                                                                                                | 1.0 |
| 2.7c | For this set-up do the following:<br>- Measure the distance $r_1$ between the light source and the solar cell, and the current $I_1$ .<br>- Place the empty vessel immediately in front of the circular aperture and measure the<br>current $I_2$ .<br>- Fill up the vessel with water, almost to the top, and measure the current $I_3$ . | 0.6 |
| 2.7d | Use your measurements from 2.7c to find a value for the refractive index $n_w$ for water.<br>Illustrate your method with suitable sketches and equations. You may include additional measurements.                                                                                                                                         | 1.6 |

2.7a

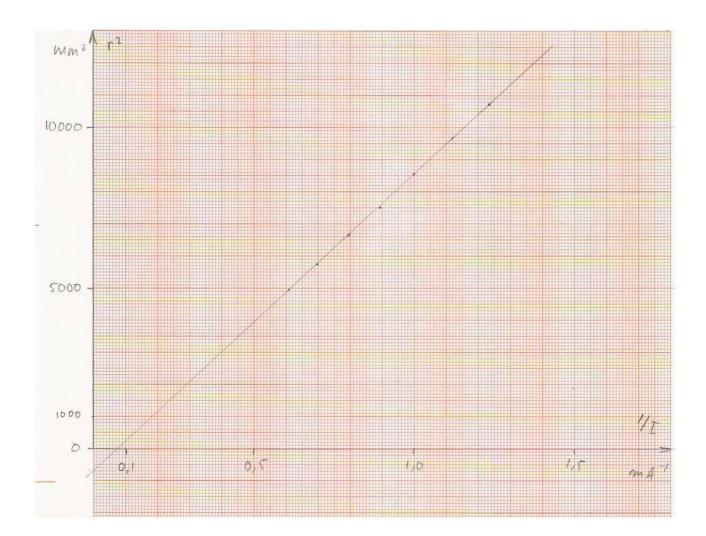




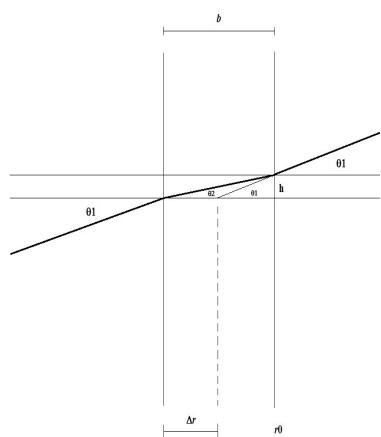

2.7b *Exemple* drawings for position A, B, C and D on previous graph:






# Solar cells (solution)






2.7c NOTE: The exemplar measurements are from a different lamp than in 2.1. For a solution to 2.7d using the distance graph it is necessary to refer to the graph below.  $r_1 = 103.5 \text{ mm}; I_1 = 0.8 \text{ mA}; I_2 = 0.70 \text{ mA}; I_3 = 0.85 \text{ mA}$ 

$$\frac{1}{I_3} \cdot \frac{I_2}{I_1} = 1.02 \quad \text{mA}^{-1} \sim r_c^2 = 880 \quad \text{mm}^2 \sim r_c = 93.8 \text{ mm}$$







$$h = (b - \Delta r) \tan \theta_1 = b \tan \theta_2 \Longrightarrow \frac{b}{b - \Delta r} = \frac{\tan \theta_1}{\tan \theta_2} \approx \frac{\sin \theta_1}{\sin \theta_2} = n, \text{ da } \theta_2 < \theta_1 <<1.$$

$$n_w \approx \frac{b}{b - \Delta r} = \frac{b}{b - (r_1 - r_c)} = \frac{26.0 \text{ mm}}{26.0 \text{ mm} - (103.5 - 93.8)\text{mm}} = 1.6$$

NOTE: Better results may be obtained. The uncertainty is rather large in this method because of the subtraction of two large numbers for  $\Delta r$ 

A different method is to determine the shift by actually moving the set-up and perhaps making an interpolation in directly measured data.

**E2**