Solution to Theoretical Question 1

A Swing with a Falling Weight

Part A

(a)

(b)

(©)

(d)

(€)

Since the length of the string L =s+ R@# is constant, its rate of change must be zero.
Hence we have

$+RO=0 (A1)
Relative to O, Q moves on a circle of radius R with angular velocity 8, so

V, =ROt =-st (A2)

Refer to Fig. Al. Relative to Q, the displacement of P in a time interval At
is AT’ =(sSA0)(—F) + (As)f =[(sO)(~T) + $E]At. It follows

V' =—sOf + st (A3)

Figure Al

The velocity of the particle relative to O is the sum of the two relative velocities given in
Egs. (A2) and (A3) so that

V=V'+V, = (-sOf +st)+ROT = —sOF (A4)

Refer to Fig. A2. The ( —t )-component of the velocity change AV is given
by (—f)- AV =vA@ =vOAt. Therefore, thet-component of the acceleration a=Av/At
is given by f.4=-v@ . Since the speed v of the particle is s@ according to Eq. (A4),
we see that the f-component of the particle’s acceleration at P is given by

a-f=-vo=—(s0)0=-s6° (A5)

P _f

Figure A2
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(f)

(9)

Note that, from Fig. A2, the radial component of the acceleration may also be obtained as
a-f=—dv/dt=-d(s6)/dt.

Refer to Fig. A3. The gravitational potential energy of the particle is given byU = —mgh.

It may be expressed in terms of sand & as
U (@) = —mg[R(1—cos ) + ssin ] (A6)

Figure A3
P

At the lowest point of its trajectory, the particle’s gravitational potential energy U must
assume its minimum value U,. By differentiating Eq. (A6) with respect to 6 and using

Eq. (Al), the angle &, corresponding to the minimum gravitational energy can be

obtained.
w_ —mg(Rsin8+£sin9+ scosej
dée déo
= —mg[Rsin @ + (-R)sin# + scos ]
=—mgscosé
At 6=26,_, ?j—l; =0. We haved, :%. The lowest point of the particle’s trajectory is
On

shown in Fig. A4 where the length of the string segment of QP is s = L— zR/2.

Figure A4

From Fig. A4 or Eq. (A6), the minimum potential energy is then

U, =U(z/2)=-mg[R+L - (7R /2)] (A7)
Initially, the total mechanical energy E is 0. Since E is conserved, the speed vy, of the
particle at the lowest point of its trajectory must satisfy
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E:O:%mv%+um (A8)

From Egs. (A7) and (A8), we obtain

Vin =+/—2U /m =/2g[R + (L - 7R/ 2)] (A9)
Part B
(h) From Eg. (A6), the total mechanical energy of the particle may be written as
E:Ozémvz+U(6):%mv2—mg[R(l—cose)+ssin9] (B1)

From Eq. (A4), the speed v is equal tos@ . Therefore, Eq. (B1) implies
vZ = (s6)? = 2g[R(L—c0s0) + s sind] (B2)

Let T be the tension in the string. Then, as Fig. B1 shows, thef -component of the net
force on the particle is —=T + mg sin 8. From Eq. (A5), the tangential acceleration of the

particle is (—392) . Thus, by Newton’s second law, we have
m(-s62) =T + mgsin® (B3)

x *
A

Figure B1

According to the last two equations, the tension may be expressed as
T =m(s6 %+ gsin @) = %[ZR(l—cose) +3ssin 6]

~ 2mgR 0

5

[tan %(e —%)](sin 0) (B4)

~ 2mgR
s

(y1—Y2)(sin®)

The functions y; =tan(@/2) and y, =3(¢—-L/R)/2 are plotted in Fig B2.

14



] Figure B2
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at
which .y, =y is called &5(7 <685 <2x)and is given by

3 Ly .. 05
2(6?s R)—tan > (B5)
or, equivalently, by
L _p _2¢an%s
R =0, 3tan > (B6)
Since the ratio L/R is known to be given by
L 9 2 V4 7y 2.1 V4
S = +oCot=(z+ ) -Stan> (7 + 5 B7
R™ 8 +3cot16 (7r+8) 3tan2(7r+8) (B7)

one can readily see from the last two equations that 6, =97/8.

Table B1
(y1—-Y>) sing tension T
0<O0<rx positive positive positive
O=rx + © 0 positive
<6 <0y negative negative positive
0 =0, zero negative zZero
O, <0<2r positive negative negative

Table B1 shows that the tension T must be positive (or the string must be taut and straight)
in the angular range 0<@ < 6. Once @ reaches s, the tension T becomes zero and the
part of the string not in contact with the rod will not be straight afterwards. The shortest
possible value smin for the length s of the line segment QP therefore occurs at 6 = 6,and

is given by
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9z 2 97, 2R
- =L-RO. =R(E=+=cot——-"")=—cot— = 2R B
Smin (78 (8 3cot16 3 3 cot16 3.35 (B8)

When@ = 6, we have T = 0 and Egs. (B2) and (B3) then leads to v 2= —gs,;, sin g, .
Hence the speed v is

Vs = /= OSmin SIN b —\/—cot—s inZ = \/—co — (B9)
=1.133,/gR

(i) When @ > 6, the particle moves like a projectile under gravity. As shown in Fig. B3, it is
projected with an initial speed v from the position P =(Xg,ys) in a direction making
an angle ¢ = (37 /2 - 6,) with the y-axis.

The speed v, of the particle at the highest point of its parabolic trajectory is equal to the
y-component of its initial velocity when projected Thus,

Vy =Vgsin(@s — ) = 1} cos—sm—_ 0.4334,/gR (B10)

The horizontal distance H traveled by the partlcle from point P to the point of maximum
height is

2 . 2
200. —
_ Vg sin (05 — ) _ V—SSIHQTE — 0.4535R (B11)

29 29

Figure B3
The coordinates of the particle when @ = 6 are given by
Xs = Rc0SHs — S SINOs =—R cos gt Smin S 8 =0.358R (B12)
ys = Rsin 6 + S, €056 = —R sin%— Smin cos% = -3.478R (B13)

Evidently, we have | y;| > (R+ H) . Therefore the particle can indeed reach its maximum
height without striking the surface of the rod.
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Part C

() Assume the weight is initially lower than O by h as shown in Fig. C1.

Figure C1

When the weight has fallen a distance D and stopped, the law of conservation of total
mechanical energy as applied to the particle-weight pair as a system leads to

—Mgh=E'-Mg(h+ D) (C1)
where E’ is the total mechanical energy of the particle when the weight has stopped. It
follows

E’'=MgD (C2)

Let A be the total length of the string. Then, its value at &= 0 must be the same as at any
other angular displacement €. Thus we must have

A:L+%R+h:s+R(9+%)+(h+D) (C3)
Noting that D = « L and introducing ¢ = L—D, we may write
(=L-D=(1-a)L (C4)
From the last two equations, we obtain
s=L-D-RO#=(-RO (C5)

After the weight has stopped, the total mechanical energy of the particle must be
conserved. According to Eqg. (C2), we now have, instead of Eq. (B1), the following

equation:

E'= MgD:%mvz—mg[R(l—cosH)+ssin 6] (C6)
The square of the particle’s speed is accordingly given by

v2 = (s0)? :%+29R{(1—c050)+%sin 0} (C7)

Since Eq. (B3) stills applies, the tension T of the string is given by
—T +mgsing =m(-s6?) (C8)
From the last two equations, it follows
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T =m(s %+ gsin 6)

—g{—D+2R(1 cosH)+3ssm0} (C9)
s m

_ 2mgR —+(1 cos&)+3(£—t9jsin9

s | mR 2\R

where Eq. (C5) has been used to obtain the last equality.
We now introduce the function

£(0) =1—cos¢9+g(é—0)sin0 (C10)
From the fact/ = (L — D) >> R, we may write
£(6) z1+%ésin9—cos¢9 _ 1+ Asin(6 - ¢) (C11)

where we have introduced

N TERAY: 2R
A= l+(§ﬁ , ¢—tan (3£J (C12)

From Eq. (C11), the minimum value of f(6) is seen to be given by

foo1-A=1- |14 (”) (C13)
V2R

Since the tension T remains nonnegative as the particle swings around the rod, we have
from Eq. (C9) the inequality

2
@+fminzw+l_ 1+ % >0 (C14)
mR mR 2R

or

ML +1 > Mz + .1+
mR mR

2
o) ) e
2R mR 2R
From Eq. (C4), Eqg. (C15) may be written as

ML ML 3L
(ﬁ)“ ( R ZRJ(_ @) (¢19)

Neglecting terms of the order (R/L) or higher, the last inequality leads to

(MLjJrl 37L_1 1_5

mR 2R 3L 1
> - = I~
¢ ML 3L) ML 3L 2M 2M (C17)
—+ —+1 1+—
mR 2R mR 2R 3m 3m
The critical value for the ratio D/L is therefore
1
@ =—r (C18)
1+ —
3m
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Marking Scheme

Theoretical Question 1
A Swing with a Falling Weight

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A (@  |Relation between and §. ($=-R0)
> 0.2for focs.
43pts.| 0.5 |5 0.3 for proportionality constant (-R).
() |Velocity of Qrelativeto O. (v, = RéT)
0.5 |» 0.2 for magnitude RO.
» 0.3 for direction t .
(©) Particle’s velocity at P relative to Q. (V' =—s@Ff +$t)
0.7 » 0.2+0.1 for magnitude and direction of r-component.
' > 0.3+0.1 for magnitude and direction of f-component.
(()d; Particle’s velocity at P relativeto O. (V=V'+V, = —sOF)
' > 0.3 for vector addition of v' and v, .
» 0.2+0.2 for magnitude and direction of V.
(6)  |f-component of particle’s acceleration at P.
07 > 0.3forrelating a or a-t to the velocity in a way that implies
' |a-t|=Vv?/s.
> 0.4for a-f=-s6? (0.1 for minus sign.)
() Potential energy U.
» 0.2 for formula U =—-mgh.
0.5 » 0.3for h=R(@-cosd)+ssind orU as a function of 4, s, and R.
(9) Speed at lowest point vy,
» 0.2 for lowest pointat 8 =x/2 or U equals minimum Uy,
0.7 > 0.2 for total mechanical energy E =mv2/2+U, =0.
> 0.3for vy =-2U,/m=2g[R+(L-7R/2)].
PartB|  (h)  |particle’s speed vswhen QP is shortest.
4.3 pts. 24 > 0.4 for tension T becomes zero when QP is shortgst.
» 0.3 for equation of motion —T +mgsinéd = m(—sé’z) .
> 0.3for E=0=m(sd)?/2-mg[R(L—cosd)+ssind].
3 L 0
> 0. 2(fs —=) =tan—=.
0.4 for > (A R) tan >
>
>

0.5for 65, =97/8.
0.3+0.2 for vy =/4gR/3cosz /16 =1.133,/gR
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() The speed vy of the particle at its highest point.
» 0.4 for particle undergoes projectile motion when 8 > 6, .
1.9 »> 0.3 for angle of projection ¢ =(37/2-6;).
»> 0.3 for vy isthey-component of its velocity at 6 = 6.
» 0.4 for noting particle does not strike the surface of the rod.
» 0.3+0.2 for
Vi =+/4gR/3cos(x /16)sin( /8) = 0.4334./gR .
Part C ()  |Thecritical value «, of the ratio D/L.
0.4 for particle’s energy E'= MgD when the weight has stopped.
3.4 pts 3.4

VVVVYV V VYV

0.3for s=L-D-R&.

0.3 for E'=MgD =mv?/2-mg[R(L-cos8)+s sind].

0.3for —T +mgsing = m(-s6?).

0.3 for concluding T must not be negative.

0.6 for an inequality leading to the determination of the range of D/L.

0.6 for solving the inequality to give the range of « = D/L.
0.6 for o, =(1+2M/3m).
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