
Question 1 

A Bungee Jumper 
 
(a) The jumper comes to rest when   

lost gravitational potential energy = stored strain energy 

mgy = 2
1 k (y-L)2 
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ky2 ñ 2y(kL + mg) 2kL+   = 0 
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This is solved as a quadratic. 
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Need positive root; lower position of rest (other root after initial rise).  
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(b) The maximum speed is attained when the acceleration is zero and forces balance;    
i.e. when mg = kx 0.1 

 
Also kinetic energy = lost potential energy ñ strain energy within 
elastic rope   
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(c) Time to come to rest = time in free fall + time in SHM of rope to stop stretching  
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The jumper enters the SHM with free fall velocity = gtf = gL2 = τυ  
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k
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We represent a full SHM cycle by 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The jumper enters the SHM at time τ given by 
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Jumper comes to rest at one half cycle of the SHM at total time given by   
 = tf + (T/2  - τ) 
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This is the same as  
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B  Heat Engine Question 
 
 

In calculating work 
obtainable, 
we assume no loss (friction 
etc.) in engine working. 
 
∆Q1 = energy from body A 
         = -ms∆T1    (∆T1 ñve) 
 
 ∆Q2  =  ms∆T2    (∆T2 

+ve) 
 
 
 
 
 
 
 

 

 (a)   For maximum amount of mechanical energy assume Carnot engine 
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But ∆Q1 =  -ms∆T1    and  ∆Q2 =  ms∆T2   
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W = Q1 ñ Q2  
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W = ms(TA-T0 ñT0 + TB) = ms(TA+TB ñ 2T0) = ms (TA+TB - 2 BATT ) 

or     ms 2
BA )( TT −  
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(d) Numerical example: 

 Mass = volume × density 
 W = 2.50 × 1.00 × 103 × 4.19 × 103 × (350 + 300 - 2 300350× ) J 
           = 20 × 106 J 
          =  20 MJ 
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C Radioactivity and age of the Earth 
 

 
 
(a) N = N0e

-λ                N0 = original number 
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n = N0(1 ñ e-λt) 
 0.1 

Therefore n = N eλt(1 ñ e-λt) = N(eλt ñ 1) 
 0.1 

So n = N(2t/τ ñ 1)  where τ is half-life    
 

or as  λ = 
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)12( 50.4/238206 −= tNn   or )1( 1540.0238206 −= teNn  where time t is in 109   

years 
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(b) )12( 710.0/235207 −= tNn or )1( 9762.0235207 −= teNn  
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(c) In mixed uranium (i.e. containing Pb of both natural and radioactive origin) 
 

204 : 206 : 207   have proportions 1.00 : 29.6 : 22.6 
In pure lead (no radioactivity)  1.00 : 17.9 : 15.5 
 

 Therefore for radioactively produced lead by subtraction   
 
 
2
0
6
 
:
 
2
0
7
 
1
1
.
7
 
:
  
7
.
1 

  0.2 
 Dividing equations from (a) and (b) gives 
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0.0120 {2T/0.710 ñ 1} = {2T/4.50 - 1} 
 

or 0.0120 {e0.9762T ñ 1}= {e0.1540T ñ1} 
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(d) Assume T >> 4.50 × 109 and ignore 1 in both brackets: 
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0.0120 {2T/0.710 } = {2T/4.50} or 0.0120 {e0.9762T}= {e0.1540T} 
 

0.0120 = {2T/4.50 - T/0.710 }= 2T(0.222-1.4084)    = 2-1.1862T   
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T = 5.38 × 109 years 
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(e) T is not >> 4.50 × 109 years but is > 0.71 × 109 years 
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We can insert the approximate value for T (call it  T* = 5.38 × 109 years) in the 
2T/4.50  term and obtain a better value by iteration in the rapidly changing 2T/0.710 
term).  We now leave in the ñ1ís, although the ñ1 on the right-hand side has little 
effect and may be omitted).  
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or  
0.0120(e0.9762T ñ1) = (e0.1540T* - 1) and similar 

So more accurate answer for T  to be in 
range 4.6 ×××× 109 years to 4.5 ×××× 109 years 
(either acceptable). 
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D Spherical charge 
 

(a)   Charge density = 
3
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(b)   Method 1 

Energy density is 2
02

1 Eε . 
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Energy in a thin shell of thickness δx at radius x is given by 
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Total energy associated with the charge distribution = 
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Method 2 
 
A shell with charge 4πx2δxρ moves from ∞ to the surface of a sphere radius x  
 0.1 
where the electric potential is 
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Putting Q = charge on sphere =  ρπ 3
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(c)     Binding energy Ebinding = Eelectric - Enuclear 
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Binding energy is a negative energy 
 
Therefore    -8.768 = Eelectric  - 10.980 MeV per nucleon 
 
Eelectric = 2.212 MeV per nucleon 
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Radius of cobalt nucleus is given by R  =  total
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E   E.M. Induction 

Method 1 Equating energy 
Horizontal component of magnetic field B inducing emf in ring: 
B = 44.5 × 10-6 cos 64o 0.2 

Magnetic flux through ring at angle θ = Bπa2sin θ 
where a = radius of ring 0.1 

Instantaneous emf = 
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(Part E) 

Method 2 Back Torque 
Horizontal component of magnetic field = B = 44.5 × 10-6 cos 64o 0.2 
Cross-section of area of ring is A 
Radius of ring = a 
Density of ring = d 
Resistivity = ρ 
ω = angular velocity  (ω positive when clockwise) 

Resistance R = 
A
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