The cartesian components of this are

$$B_{x} = -B_{\phi} \frac{y}{r} = -\frac{2\mu_{0}I'y}{\pi D^{2}}; \qquad B_{y} = B_{\phi} \frac{x}{r} = \frac{2\mu_{0}I'x}{\pi D^{2}}.$$

For the superposed fields, the currents are $\pm I'$ and the corresponding cylinder axes are located at $x = \pm D/4$.

The two x-components add up to zero, while the y-components yield

$$B_{y} = \frac{2\mu_{0}}{\pi D^{2}} [I'(x + D/4) - I'(x - D/4)] = \frac{\mu_{0}I'}{\pi D} = \frac{6\mu_{0}I}{(2\pi + 3\sqrt{3})D},$$

i.e., a *constant* field. The direction is along the positive y-axis.

Solution Problem 2

a) The potential energy gain eV is converted into kinetic energy. Thus

 $\frac{1}{2}mv^2 = eV$ (non-relativistically)

$$\frac{mc^2}{\sqrt{1-v^2/c^2}} - mc^2 = eV \qquad \text{(relativistically)}.$$

Hence

$$v = \begin{cases} \sqrt{2eV/m} & \text{(non - relativistically)} \\ c_{\sqrt{1 - (\frac{mc^2}{mc^2 + eV})^2}} & \text{(relativistically).} \end{cases}$$
(1)

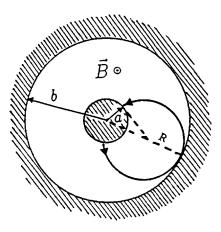
b) When V = 0 the electron moves in a homogeneous static magnetic field. The magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a circle. The initial velocity is tangential to the circle.

The radius *R* of the orbit (the "cyclotron radius") is determined by equating the centripetal force and the Lorentz force:

109

$$eBv_0 = \frac{mv_0^2}{R} ,$$

$$B = \frac{mv_0}{eR} .$$
(2)



110

From the figure we see that in the critical case the radius R of the circle satisfies

$$\sqrt{a^2 + R^2} = b - R$$

By squaring we obtain

$$a^{2} + R^{2} = b^{2} - 2bR + R^{2},$$

 $R = (b^{2} - a^{2})/2b$.

i.e.

Insertion of this value for the radius into the expression (2) gives the critical field

$$B_c = \frac{mv_0}{eR} = \frac{2bmv_0}{(b^2 - a^2)e}.$$

c) The change in angular momentum with time is produced by a torque. Here the azimuthal component F_{ϕ} of the Lorentz force $\vec{F} = (-e)\vec{B} \times \vec{v}$ provides a torque $F_{\phi}r$. It is only the radial component $v_r = dr/dt$ of the velocity that provides an azimuthal Lorentz force. Hence

$$\frac{dL}{dt} = eBr\frac{dr}{dt},$$

which can be rewritten as

$$\frac{d}{dt}(L-\frac{eBr^2}{2})=0.$$

Hence

$$C = \underline{L - \frac{1}{2}eBr^2} \tag{3}$$

is constant during the motion. The dimensionless number k in the problem text is thus $k = \frac{1}{2}$.

d) We evaluate the constant C, equation (3), at the surface of the inner cylinder and at the maximal distance r_m :

 $0 - \frac{1}{2}eBa^2 = mvr_m - \frac{1}{2}eBr_m^2$

which gives

$$v = \frac{eB(r_m^2 - a^2)}{2mr_m}.$$
 (4)

Alternative solution: One may first determine the electric potential V(r) as function of the radial distance. In cylindrical geometry the field falls off inversely proportional to r, which requires a logarithmic potential, $V(s) = c_1 \ln r + c_2$. When the two constants are determined to yield V(a) = 0 and V(b) = V we have

$$V(r) = V \frac{\ln(r/a)}{\ln(b/a)}.$$

The gain in potential energy, $sV(r_m)$, is converted into kinetic energy:

$$\frac{1}{2}mv^2 = eV\frac{\ln(r_m/a)}{\ln(b/a)}$$

Thus

$$v = \sqrt{\frac{2eV}{m} \frac{\ln(r_m / a)}{\ln(b / a)}}.$$
(5)

(4) and (5) seem to be different answers. This is only apparent since r_m is not an independent parameter, but determined by B and V so that the two answers are identical.

e) For the critical magnetic field the maximal distance r_m equals b, the radius of the outer cylinder, and the speed at the turning point is then

$$v = \frac{eB(b^2 - a^2)}{2mb}.$$

111

Since the Lorentz force does no work, the corresponding kinetic energy $\frac{1}{2}mv^2$ equals eV (question a):

$$v = \sqrt{2eV/m}$$

The last two equations are consistent when

$$\frac{eB(b^2-a^2)}{2mb} = \sqrt{2eV/m}.$$

The critical magnetic field for current cut-off is therefore

$$B_c = \frac{2b}{\frac{b^2 - a^2}{2mV}} \sqrt{\frac{2mV}{e}}.$$

f) The Lorentz force has no component parallel to the magnetic field, and consequently the velocity component v_B is constant under the motion. The corresponding displacement parallel to the cylinder axis has no relevance for the question of reaching the anode.

Let v denote the final azimuthal speed of an electron that barely reaches the anode. Conservation of energy implies that

$$\frac{1}{2}m(v_B^2+v_\phi^2+v_r^2)+eV=\frac{1}{2}m(v_B^2+v^2),$$

giving

$$v = \sqrt{v_r^2 + v_\phi^2 + 2eV / m}.$$
 (6)

Evaluating the constant C in (3) at both cylinder surfaces for the critical situation we have

$$mv_{\phi}a - \frac{1}{2}eB_ca^2 = mvb - \frac{1}{2}eB_cb^2.$$

Insertion of the value (6) for the velocity v yields the critical field

$$B_{c} = \frac{2m(vb - v_{\phi}a)}{e(b^{2} - a^{2})} = \frac{2mb}{e(b^{2} - a^{2})} \left[\sqrt{v_{r}^{2} + v_{\phi}^{2} + 2eV / m} - v_{\phi}a / b \right]$$

112