
Solutions to Theoretical Question 3

(a)
The mass of the rod is given equal to the mass of the cylinder M which itself is πa2ld. Thus the
total mass equals 2M = 2πa2ld. The mass of the displaced water is surely less than πa2lρ (when
the buoy is on the verge of sinking). Using Archimedes’ principle, we may at the very least expect
that

2πa2ld < πa2lρ or d < ρ/2

In fact, with the floating angle α (< π) as drawn, the volume of displaced water is obtained by
geometry:

α α
a a

2a

V = la2α − la2 sinα cos α .

By Archimedes’ principle, the mass of the buoy equals the mass of displaced water. Therefore,
2πa2ld = la2ρ(α − sinα cos α), i.e. α is determined by the relation

α − sinα cosα = 2dπ/ρ .

(b)
If the cylinder is depressed a small distance z vertically from equilibrium, the nett upward restoring
force is the weight of the extra water displaced or gρ.2a sin α.lz, directed oppositely to z. This is
characteristic of simple harmonic motion and hence the Newtonian equation of motion of the buoy
is (upon taking account of the extra factor 1/3)

z
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8Mz̈/3 = −2ρglza sin α or z̈ +
3ρg sinα

4πda
z = 0 ,

and this is the standard sinusoidal oscillator equation (like a simple pendulum). The solution is of
the type z = sin(ωzt), with the angular frequency

ωz =

√

3ρg sinα

4πda
=

√

3g sinα

2a(α − cosα sinα)
,

where we have used the relation worked out at the end of the first part.



(c)

Without regard to the torque and only paying heed to vertical forces, if the buoy is swung by some
angle so that its weight is supported by the nett pressure of the water outside, the volume of water
displaced is the same as in equilibrium. Thus the centre of buoyancy remains at the same distance
from the centre of the cylinder. Consequently we deduce that the buoyancy arc is an arc of a circle
centred at the middle of the cylinder. In other words, the metacentre M of the swinging motion is
just the centre of the cylinder. In fact the question assumes this.

We should also notice that the centre of mass G of the buoy is at the point where the rod touches the
cylinder, since the masses of rod and cylinder each equal M . Of course the cylinder will experience
a nett torque when the rod is inclined to the vertical. To find the period of swing, we first need to
determine the moment of inertia of the solid cylinder about the central axis; this is just like a disc
about the centre. Thus if M is the cylinder mass
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The next step is to find the moment of inertia of the rod about its middle,

Irod =

∫ a

−a
(Mdx/2a).x2 = [Mx3/6a]a−a = Ma2/3 .

Finally, use the parallel axis theorem to find the moment of inertia of the buoy (cylinder + rod)
about the metacentre M ,

IM = Ma2/2 + [Ma2/3 + M(2a)2] = 29Ma2/6 .

(In this part we are neglecting the small horizontal motion of the bentre of mass; the water is the
only agent which can supply this force!) When the buoy swings by an angle θ about equilibrium the
restoring torque is 2Mga sin θ ≃ 2Mgaθ for small angles, which represents simple harmonic motion
(like simple pendulum). Therefore the Newtonian rotational equation of motion is

IM θ̈ ≃ −2Mgaθ , or θ̈ +
12g

29a
= 0 .

The solution is a sinusoidal function, θ ∝ sin(ωθt), with angular frequency

ωθ =
√

12g/29a .

(d)

The accelerometer measurements give

Tθ/Tz ≃ 1.5 or (ωz/ωθ)
2 ≃ 9/4 ≃ 2.25 . Hence



2.25 =
3g sinα

2a(α − sinα cos α)

29a

12g
,

producing the (transcendental) equation

α − sinα cos α ≃ 1.61 sin α .

Since 1.61 is not far from 1.57 we have discovered that a physically acceptable solution is α ≃ π/2,
which was to be shown. (In fact a more accurate solution to the above transcendental equation
can be found numerically to be α = 1.591.) Setting alpha = π/2 hereafter, to simplify the algebra,
ω2

z = 3g/πa and 4d/ρ = 1 to a good approximation. Since the vertical period is 1.0 sec,

1.0 = (2π/ωz)
2 = 4π3a/3g ,

giving the radius a = 3 × 9.8/4π3 = .237 m.

We can now work out the mass of the buoy (in SI units),

2M = 2πa2ld = 2πa2.a.ρ/4 = πa3ρ/2 = π × 500 × (.237)3 ≃ 20.9 kg .


