Solutions to Theoretical Question 2

(a)

Snell's Law may be expressed as

$$
\begin{equation*}
\frac{\sin \theta}{\sin \theta_{0}}=\frac{c}{c_{0}} \tag{1}
\end{equation*}
$$

where c is the speed of sound.
Consider some element of ray path $d s$ and treat this as, locally, an arc of a circle of radius R. Note that R may take up any value between 0 and ∞. Consider a ray component which is initially directed upward from S.

In the diagram, $d s=R d \theta$, or $\frac{d s}{d \theta}=R$.
From equation (1), for a small change in speed $d c$,

$$
\cos \theta d \theta=\frac{\sin \theta_{0}}{c_{0}} d c
$$

For the upwardly directed ray $c=c_{0}+b z$ so $d c=b d z$ and

$$
\frac{\sin \theta_{0}}{c_{0}} b d z=\cos \theta d \theta, \text { hence } d z=\frac{c_{0}}{\sin \theta_{0}} \frac{1}{b} \cos \theta d \theta
$$

We may also write (here treating $d s$ as straight) $d z=d s \cos \theta$. So

$$
d s=\frac{c_{0}}{\sin \theta_{0}} \frac{1}{b} d \theta
$$

Hence

$$
\frac{d s}{d \theta}=R=\frac{c_{0}}{\sin \theta_{0}} \frac{1}{b} .
$$

This result strictly applies to the small arc segments $d s$. Note that from equation (1), however, it also applies for all θ, i.e. for all points along the trajectory, which therefore forms an arc of a circle with radius R until the ray enters the region $z<0$.
(b)

Here

$$
\begin{aligned}
z_{s} & =R-R \sin \theta_{0} \\
& =R\left(1-\sin \theta_{0}\right) \\
& =\frac{c_{0}}{b \sin \theta_{0}}\left(1-\sin \theta_{0}\right),
\end{aligned}
$$

from which

$$
\theta_{0}=\sin ^{-1}\left[\frac{c_{0}}{b z_{s}+c_{0}}\right] .
$$

(c)

The simplest pathway between S and H is a single arc of a circle passing through S and H. For this pathway:

$$
X=2 R \cos \theta_{0}=\frac{2 c_{0} \cos \theta_{0}}{b \sin \theta_{0}}=\frac{2 c_{0}}{b} \cot \theta_{0}
$$

Hence

$$
\cot \theta_{0}=\frac{b X}{2 c_{0}} .
$$

The next possibility consists of two circular arcs linked as shown.

For this pathway:

$$
\frac{X}{2}=2 R \cos \theta_{0}=\frac{2 c_{0}}{b} \cot \theta_{0}
$$

i.e.

$$
\cot \theta_{0}=\frac{b X}{4 c_{0}}
$$

In general, for values of $\theta_{0}<\frac{\pi}{2}$, rays emerging from S will reach H in n arcs for launch angles given by

$$
\theta_{0}=\cot ^{-1}\left[\frac{b X}{2 n c_{0}}\right]=\tan ^{-1}\left[\frac{2 n c_{0}}{b X}\right]
$$

where $n=1,2,3,4, \ldots$
Note that when $n=\infty, \theta_{0}=\frac{\pi}{2}$ as expected for the axial ray.
(d)

With the values cited, the four smallest values of launch angle are

n	θ_{0} (degrees)
1	86.19
2	88.09
3	88.73
4	89.04

(e)

The ray path associated with the smallest launch angle consists of a single arc as shown:
(2)

We seek

$$
\int_{1}^{3} d t=\int_{1}^{3} \frac{d s}{c}
$$

Try first:

$$
t_{12}=\int_{1}^{2} \frac{d s}{c}=\int_{\theta_{0}}^{\pi / 2} \frac{R d \theta}{c}
$$

Using

$$
R=\frac{c}{b \sin \theta}
$$

gives

$$
t_{12}=\frac{1}{b} \int_{\theta_{0}}^{\pi / 2} \frac{d \theta}{\sin \theta}
$$

so that

$$
t_{12}=\frac{1}{b}\left[\ln \tan \frac{\theta}{2}\right]_{\theta_{0}}^{\pi / 2}=-\frac{1}{b} \ln \tan \frac{\theta_{0}}{2}
$$

Noting that $t_{13}=2 t_{12}$ gives

$$
t_{13}=-\frac{2}{b} \ln \tan \frac{\theta_{0}}{2} .
$$

For the specified b, this gives a transit time for the smallest value of launch angle cited in the answer to part (d), of

$$
t_{13}=6.6546 \mathrm{~s}
$$

The axial ray will have travel time given by

$$
t=\frac{X}{c_{0}}
$$

For the conditions given,

$$
t_{13}=6.6666 \mathrm{~s}
$$

thus this axial ray travels slower than the example cited for $n=1$, thus the $n=1$ ray will arrive first.

