
Solutions to Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a)

If a photon has an effective inertial mass m determined by its energy then mc2 = hf or m =
hf

c2
.

Now, assume that gravitational mass = inertial mass, and consider a photon of energy hf (mass

m =
hf

c2
) emitted upwards at a distance r from the centre of the star. It will lose energy on escape

from the gravitational field of the star.

Apply the principle of conservation of energy:

Change in photon energy (hfi − hff ) = change in gravitational energy, where subscript i →
initial state and subscript f → final state.
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The negative sign shows red-shift, i.e. a decrease in f , and an increase in wavelength.
Thus, for a photon emitted from the surface of a star of radius R, we have
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Since the change in photon energy is small, (δf $ f),
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(b)
The change in photon energy in ascending from ri to rf is given by
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In the experiment, R is the radius of the star, d is the distance from the surface of the star to the
spacecraft and the above equation becomes:
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(1)

The frequency of the photon must be doppler shifted back from ff to fi in order to cause resonance
excitation of the He+ ions in the spacecraft.
Thus apply the relativistic Doppler principle to obtain:
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where f ′ is the frequency as received by He+ ions in the spacecraft, and β = v/c.
That is, the gravitationally reduced frequency ff has been increased to f ′ because of the velocity
of the ions on the spacecraft towards the star. Since β ! 1,
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Alternatively, since β ! 1, use the classical Doppler effect directly.
Thus

f ′ =
ff

1 − β
or

ff
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= 1 − β

Since f ′ must be equal to fi for resonance absorption, we have
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Substitution of 2 into 1 gives
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Given the experimental data, we look for an effective graphical solution. That is, we require a linear
equation linking the experimental data in β and d.
Rewrite equation 3:
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Inverting the equation gives:
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R and M can be conveniently determined from (A) and (B). Equation (C) is redundant. However,
it may be used as an (inaccurate) check if needed.
From the given data:

R = 1.11 × 108 m

M = 5.2 × 1030 kg

From the graph, the slope αR = 3.2 × 1012 m (A)

The
1

β
-intercept α =

Rc2

GM
= 0.29 × 105 (B)

Dividing (A) by (B)

R =
3.2 × 1012 m

0.29 × 105
" 1.104 × 108 m

Substituting this value of R back into (B) gives:

M =
Rc2

gα
=

(1.104 × 108) × (3.0 × 108)2

(6.7 × 10−11) × (0.29 ×1 05)

or M = 5.11 × 1030 kg

(c)

(i)

Atom before the decay Atom and photon after the decay

+ hf

m m0 0
’

For the photon, photon momentum is p =
hf

c
and photon energy is E = hf .

Use the mass-energy equivalence, E = mc2, to relate the internal energy change of the atom
to the rest-mass change. Thus:

∆E = (m0 = m′
0) c2 (1)

In the laboratory frame of reference the energy before emission is

E = m0c
2 (2)

Recalling the relativistic relation
E2 = p2c2 + m2
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4

The energy after emission of a photon is
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√
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where also p = hf/c by conservation of momentum.
Conservation of energy requires that (2) = (3), so that:
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Carrying out the algebra and using equation (1):
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(ii)
For the emitted photon,

hf = ∆E

[
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.

If relativistic effects are ignored, then

hf0 = ∆E .

Hence the relativistic frequency shift
∆f

f0

is given by
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=
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For He+ transition (n = 2 → 1), applying Bohr theory to the hydrogen-like helium ion gives:

∆E = 13.6 × 22 ×
[

1

12
−

1

22

]

= 40.8 ev

Also, m0c2 = 3.752 × 106 eV. Therefore the frequency shift due to the recoil gives

∆f

f0

$ 5.44 × 10−12

This is very small compared to the gravitational red-shift of
∆f

f
∼ 10−5, and may be ignored

in the gravitational red-shift experiment.


