Theoretical Question 2

Sound Propagation

Introduction

The speed of propagation of sound in the ocean varies with depth, temperature and salinity. Figure 1 (a) below shows the variation of sound speed c with depth z for a case where a minimum speed value c_{0} occurs midway betweeen the ocean surface and the sea bed. Note that for convenience $z=0$ at the depth of this sound speed minimum, $z=z_{S}$ at the surface and $z=-z_{b}$ at the sea bed. Above $z=0, c$ is given by

$$
c=c_{0}+b z
$$

Below $z=0, c$ is given by

$$
c=c_{0}-b z
$$

In each case $b=\left|\frac{d c}{d z}\right|$, that is, b is the magnitude of the sound speed gradient with depth; b is assumed constant.

Figure 1 (a)

Figure 1 (b)

Figure 1(b) shows a section of the $z-x$ plane through the ocean, where x is a horizontal direction. The variation of c with respect to z is shown in figure 1(a). At the position $z=0, x=0$, a sound source S is located. A 'sound ray' is emitted from S at an angle θ_{0} as shown. Because of the variation of c with z, the ray will be refracted.
(a) (6 marks)

Show that the trajectory of the ray, leaving the source S and constrained to the $z-x$ plane forms an arc of a circle with radius R where

$$
R=\frac{c_{0}}{b \sin \theta_{0}} \text { for } 0 \leq \theta_{0}<\frac{\pi}{2}
$$

(b) (3 marks)

Derive an expression involving z_{S}, c_{0} and b to give the smallest value of the angle θ_{0} for upwardly directed rays which can be transmitted without the sound wave reflecting from the sea surface.
(c) (4 marks)

Figure 1(b) shows the position of a sound receiver H which is located at the position $z=0, x=X$. Derive an expression involving b, X and c_{0} to give the series of angles θ_{0} required for the sound ray emerging from S to reach the receiver H. Assume that z_{S} and z_{b} are sufficiently large to remove the possibility of reflection from sea surface or sea bed.
(d) (2 marks)

Calculate the smallest four values of θ_{0} for refracted rays from S to reach H when

- $X=10000 \mathrm{~m}$
- $c_{0}=1500 \mathrm{~ms}^{-1}$
- $b=0.02000 \mathrm{~s}^{-1}$
(e) (5 marks)

Derive an expression to give the time taken for sound to travel from S to H following the ray path associated with the smallest value of angle θ_{0}, as determined in part (c). Calculate the value of this transit time for the conditions given in part (d). The following result may be of assistance:

$$
\int \frac{d x}{\sin x}=\ln \tan \left(\frac{x}{2}\right)
$$

Calculate the time taken for the direct ray to travel from S to H along $z=0$. Which of the two rys will arrive first, the ray for which $\theta_{0}=\pi / 2$, or the ray with the smallest value of θ_{0} as calculated for part (d)?

