Experimental problem 2...... Solution

1. The circuit diagram is shown in Fig. 1

Fig. 1
We have the relation:

$$
\begin{gathered}
I=\frac{V_{R}}{R} ; \\
Z+R=\frac{V_{Z+R}}{I}=\frac{V_{Z+R}}{V_{R}} R
\end{gathered}
$$

2. Measure the values of V_{Z+R} and V_{R} at various frequencies (f), the measured data and calculated value of $Z+R$ are shown in table 1. "The $Z+R-f$ curve is plotted in Fig. 2

Table 1. The magnitude of impedance verus frequency

$f\left(\times 10^{3} \mathrm{~Hz}\right)$	$U_{Z+R}\left(V_{p p}\right)$	$U_{R} \mathrm{mV}_{p p}$	$Z+R\left(\times 10^{3} \Omega\right)$
0.100	0.600	22.0	2.73
0.200	0.600	45.0	1.33
0.400	0.600	94.0	0.638
0.700	0.300	92.0	0.326
0.900	0.300	121	0.248

1.00	0.300	136	0.220
1.10	0.300	140	0.214
1.16	0.300	141	0.213
1.25	0.300	140	0.214
1.50	0.300	120	0.250
2.00	0.300	88.0	0.341
4.00	0.300	78.0	0.769
8.00	0.600	38.0	1.58
15.0	0.600	20.0	3.00
30.0	0.600	10.0	6.00
50.0	0.600	6.0	10.0

From table 1 and Fig. 2, we got the conclusions:
(1) Current resonance (minimum of Z) occurs at $f_{0} \cong 1.16 \times 10^{3} \mathrm{~Hz}$.
(2) $f\left\langle\left\langle f_{0}, Z \propto f, \Delta \varphi \approx-\pi / 2\right.\right.$. The impedance of the "black box" at low frequency is dominated by a inductance.
(3) $f\rangle>f_{0}, Z \propto f, \Delta \varphi \approx \pi / 2$. The impedance of the "black box" at high frequency is dominated by a inductance.
(4) Equivalent circuit of the "black box"; r, L and C connected in series shown in Fig. 3.

Fig. 3
3. Determination of the values of r, L and C.
(a) r

At resonance frequency f_{0}

$$
V_{C}=-V_{L}
$$

Then

$$
Z+R=\frac{V_{Z+R}}{I}=\frac{V_{Z+R}}{V_{R}} R=r+R
$$

From table $1, r+R=213 \Omega$, it is given $R=100 \Omega$, so the equivalent resistance r in Fig. 3 is equal 113Ω.
(b) C

At low frequency, $z_{L} \approx 0$ in Fig. 3. So the circuit could be considered as a series RC circuit.

From phasor diagram, Fig. 4,

$$
\frac{1}{\omega C}=Z_{C}=\frac{V_{C}}{I}=\frac{\sqrt{V_{Z+R}^{2}-V_{R+r}^{2}}}{I}
$$

Since $V_{R+r}^{2} / V_{Z+R}^{2} \approx 6 \times 10^{-3}$ at $f=100 \mathrm{~Hz}, V_{R+r}^{2}$ can beneglected with respect to V_{Z+R}^{2}, so

$$
\begin{aligned}
\frac{1}{\omega C} \approx \frac{V_{Z+R}}{I} & \approx Z+R=2.73 \times 10^{3} \Omega \\
C & \approx \frac{1}{\omega(Z+R)}=0.58 \mu f \\
C & \cong 0.58 \mu f
\end{aligned}
$$

Fig. 4
(c) L

At high frequency, $Z_{L} \approx 0$ in Fig. 3. So the circuit could be considered as a series RL circuit.

From phasor diagram, Fig. 5,

$$
\left|V_{L}\right|=\sqrt{V_{Z+R}^{2}-V_{r+R}^{2}},
$$

Since $V_{r+R}^{2} / V_{Z+R}^{2} \approx 4.5 \times 10^{-4}$ at $f=50 \mathrm{kHz}, V_{r+R}^{2}$ can be neglected with respect to V_{Z+R}^{2}, so

Fig. 5

$$
\begin{equation*}
\omega L=Z_{L}=\frac{V_{L}}{I}=\frac{\left|V_{Z+R}\right|}{I} \approx Z+R=10^{4} \Omega \tag{3}
\end{equation*}
$$

$$
L=\frac{Z+R}{\omega}=31.8 \mathrm{mH} .
$$

Error estimation:
It is given, precision of the resistance box reading $\Delta R / R \approx 0.5 \%$ precision of the voltmeter reading $\Delta V / V \approx 4 \%$
(1) Resistance r : at resonance frequency f_{0}

$$
\begin{gathered}
r+R=\frac{V_{Z+R}}{V_{R}} R \\
\frac{\Delta(r+R)}{r+R}=\frac{\Delta V_{Z+R}}{V_{Z+R}}+\frac{\Delta V_{R}}{V_{R}}+\frac{\Delta R}{R} \approx 4 \%+4 \%+0.5 \%=8.5 \% \\
\Delta r=16 \Omega
\end{gathered}
$$

(2) Capacitance C: (Neglect the error of the frequency reading)

$$
\begin{gathered}
\frac{1}{\omega C} \cong Z_{C}=\frac{V_{Z+R}}{V_{R}} R \\
\frac{\Delta C}{C}=\frac{\Delta V_{Z+R}}{V_{Z+R}}+\frac{\Delta V_{R}}{V_{R}}+\frac{\Delta R}{R} \approx 8.8 \%
\end{gathered}
$$

The approximation $V_{C} \approx V_{Z+R}$ will introduce apercentageerror 0.3%
(3) Inductance L: Similar to the results of capacitance C, but the percentage error introduced by the approximation $V_{L} \approx V_{Z+R}$ is much small (0.003%) and thus negligible.

$$
\frac{\Delta L}{L} \approx 8.5 \% .
$$

Experimental Problem 2: Grading Scheme (10 points maximum)

1. Measuring circuit is correct as shown in Fig.(a)

Fig. a
2. Correct data table and figure to show the characteristic of the black box $\cdots \cdots \cdot 2.0$ points
3. The equivalent circuit of the black box, and the names of the elements with their values in the equivalent circuit are correct
total 6.0 points
(a) R, L and C are connected in series
$\cdots \cdots 1.5$ point
(L and C are connected in series
$\cdots \cdot \cdot 1.0$ point)
(b) Correct value (error less than 15%) for each element
$\cdots \cdots \cdot 0.5$ point $(\times 3)$
(error between 15% and $30 \% 0.3$)
(error between 30% and $50 \% 0.1$)
(c) Correct calculation formula for each element $\cdots \cdots \cdot 0.5$ point $(\times 3)$
(d) Error estimate is reasonable for each element $\cdots \cdots 0.5$ points $(\times 3)$

