Experimental Problem 1——Solution

1. (a) Determine the transmission axis of the polarizer and the Brewster angle θ_{B} of the sample by using the fact that the rerlectivity of the p-component $R_{p}=0$ at the Brewster angle.

Change the orientation of the transmission axis of P_{1}, specified by the position of the marked line on the degree scale disk (ψ) and the incident angle $\left(\theta_{i}\right)$ successively until the related intensity $I_{r}=0$.

Now the incident light consists of p-component only and the incident angle is θ_{B}, the corresponding values ψ_{1} and θ_{B} are shown below:

ψ_{1}	140.0°	322.0°	141.0°	322.5°
θ	56.4°	56.4°	56.2°	56.2°

$\psi_{1}=140.5^{\circ} \pm 0.5^{\circ}$ or $322.3^{\circ} \pm 0.1^{\circ}$
The Brewster angle θ_{B} is $56.3^{\circ} \pm 0.1^{\circ}$

1. (b) Verification of the linear relationship between the light intensity and the microammenter reading.

The intensity the transmitted light passing through two polarized P_{1} and P_{2} obeys Malus' law

$$
I(\theta)=I_{0} \cos ^{2} \theta
$$

where I_{0} is the intensity of the light polarized by p_{1} and incident, I is the intensity of the transmitted light, and θ is the angle between the transmission axes of P_{1} and p_{2}. Thus we can obtain light with various intensities for the verification by using two polarizers.

The experimental arrangement is shown in the figure.
The light intensity detector D_{1} serves to monitor the intensity fluctuation of the incident beam (the ratio of I_{1} to I_{2} remain unchanged), and D_{2} measures I_{2}. Let $i_{1}(\theta)$ and $i_{2}(\theta)$ be the readings of D_{1} and D_{2} respectively, and $\psi_{2}(\theta)$ be the reading of the marked line position. $i_{2}=0$ when $\theta=90^{\circ}$, the corresponding ψ_{2} is $\psi_{2}\left(90^{\circ}\right)$, and the value of θ corresponding to ψ_{2} is

$$
\theta=\left|\psi_{2}-\psi_{2}\left(90^{\circ}\right) \pm 90^{\circ}\right|
$$

Data and results;

$$
\psi_{2}\left(90^{\circ}\right)=4^{\circ}
$$

ψ_{2}	94.0°	64.0°	49.0°	34.0°	4.0°
θ	0.0°	30.0°	45.0°	60.0°	90.0°
$i_{1}(\theta) \mu A$	6.3×1	5.7×1	5.7×1	5.7×1	5.7×1
$i_{2}(\theta) \mu A$	18.7×5	12.7×5	8.2×5	4.0×5	0.0×5

From the above data we can obtain the values of $I(\theta) / I_{2}(\theta)$ from the formula

$$
\frac{I(\theta)}{I_{0}}=\frac{i_{2}(\theta)}{i_{1}(\theta)} \cdot \frac{i_{1}(0)}{i_{2}(0)}
$$

and compare them with $\cos ^{2} \theta$ for examining the linear relationship. The results obtained are:

θ	0.0°	30.0°	45.0°	60.0°	90.0°
$\cos ^{2} \theta$	1.00	0.75	0.50	0.25	0.00

$I(\theta) / I_{0}$	1.00	0.75	0.49	0.24	0.00

1. (c) Reflectivity measurement

The experimental arrangement shown below is used to determine the ratio of I_{0} to I_{1} which is proportional to the ratio of the reading $\left(i_{20}\right)$ of D_{2} to the corresponding reading $\left(i_{10}\right)$ of D_{1}.

Then used the experimental arrangement shown below to measure the relativity R_{p} of the sample at various incident angle (θ) while the incident light consists of p-component only. Let $i_{1}(\theta)$ and $i_{2}(\theta)$ be the readings of D_{1} and D_{2} respectively.

Then the reflectivity is

$$
R_{p}(\theta)=\frac{I(\theta)}{I_{0}}=\frac{i_{2}(\theta)}{i_{1}(\theta)} \cdot \frac{i_{10}}{i_{20}}
$$

Data and results:

$$
\begin{aligned}
\psi_{1} & =140.5^{\circ} \\
i_{20} & =19.8 \times 5 \mu \mathrm{~A} \\
i_{10} & =13.3 \mu \mathrm{~A}
\end{aligned}
$$

$\theta\left({ }^{\circ}\right)$	$i_{2}(\theta)$	$i_{1}(\mu A)$	$R_{p}(\theta)$
5	15.1×0.2	11.1	0.037
10	14.9×0.2	11.2	0.036
20	13.3×0.2	11.1	0.032
30	11.4×0.2	12.2	0.025
40	7.8×0.2	14.7	0.014
50	2.3×0.2	16.9	0.0037
53	0.7×0.2	11.3	0.0017
55	0.3×0.2	11.3	0.00059
$56.3($ dark $)$	~ 0	11.5	~ 0
58	0.3×0.2	11.5	0.0007
60	1.1×0.2	13.5	0.0024
64	6.5×0.2	16.7	0.011
66	7.8×0.2	11.8	0.018
68	16.3×0.2	15.0	0.029
72	5.3×0.1	11.7	0.061
76	13.1×1	14.0	0.13
80	4.4×5	11.7	0.25
84	9.1×5	14.5	0.42

The curve of reflectivity of p-component as a function of incident in plexiglass

2. The Brewster angle θ_{B} can be found from the above date as

$$
\theta_{B}=56.3^{\circ} \pm 0.2^{\circ}
$$

The index of refraction can be calculated as

$$
n=\tan \theta_{B}=1.50 \pm 0.01
$$

The sources of errors are:

1. Detector sensitivity is low.
2. The incident light does not consist of p-component only.
3. The degree scales are not uniform.

EXPERIMENTAL PROBLEM 1: Grading Scheme(10 points)

Part 1. Reflectivity of the p-component. 7 points, distributed as follows.
a. Determination of the transmission axis of the polarizer (A) in p-component measurement, 1 point.

(Error less than $\pm 2^{\circ}$,	1.0point;
error less than $\pm 3^{\circ}$,	0.7 point;
error less than $\pm 4^{\circ}$,	0.3 point;
error less than $\pm 5^{\circ}$,	0.1 point.)

b. Verification of the linearity of the light intensity detector(2 points). Draws the optical schematic diagram correctly, 1.0 point; (Without the correction of the fluctuation of the light intensity, 0.4 point only);

Uses $I / I_{0} \sim \cos ^{2} \theta$ figure to show the "linearity", 0.5 point;
Tabulate the measured data(with 5 points at least)correctly, 0.5 point.
c. Determination of the reflectivity of the p-component of the light as a function of incident angle, 4 points, distributed as follows.
Draws the optical schematic diagram correctly and tabulate the measured data perfectly, 2.0 points;
Plot the reflectivity as the function of incident angle with indication of errors, 2 points.

Part 2. Determination of the refractive index of sample, 3 point.

Brewster angle of sample, 1 point;

(Error less than $\pm 1^{\circ}$,	1.0 point;
error less than $\pm 2^{\circ}$,	0.5 point;
error less than $\pm 3^{\circ}$,	0.2 point;
error larger than $\pm 3^{\circ}$,	0 point.)
The refractive index of sample,	0.5 point.
Discussion and determination of errors, 1.5 points.	

