ANSWER SHEET 3

Theoretical Problem 1-Solution

1) 1a. Taking the force center as the origin of the space coordinate x and the zero potential point, the potential energy of the particle is

$$
\begin{equation*}
U(x)=f|x| \tag{1}
\end{equation*}
$$

The total energy is

$$
W=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}+f|x| .
$$

1b. Neglecting the rest energy, we get

$$
\begin{equation*}
W=|p| c+f|x|, \tag{2}
\end{equation*}
$$

Since W is conserved throughout the motion, so we have

$$
\begin{equation*}
W=|p| c+f|x|=p_{0} c, \tag{3}
\end{equation*}
$$

Let the x axis be in the direction of the initial momentum of the particle,

$$
\left.\begin{array}{llll}
p c+f x=p_{0} c & \text { when } & x>0, & p>0 ; \\
-p c+f x=p_{0} c & \text { when } & x>0, & p<0 ; \\
p c-f x=p_{0} c & \text { when } & x<0, & p>0 ; \tag{4}\\
-p c-f x=p_{0} c & \text { when } & x<0, & p<0 .
\end{array}\right\}
$$

The maximum distance of the particle from the origin, let it be L, corresponds to $p=0$. It is

$$
L=p_{0} c / f .
$$

1c. From Eq. 3 and Newton's law

$$
\frac{d p}{d t}=F= \begin{cases}-f, & x>0 \tag{5}\\ f, & x<0\end{cases}
$$

we can get the speed of the particle as

$$
\begin{equation*}
\left|\frac{d x}{d t}\right|=\frac{c}{f}\left|\frac{d p}{d t}\right|=c, \tag{6}
\end{equation*}
$$

i.e. the particle with very high energy always moves with the speed of light except that it is in the region extremely close to the points $x= \pm L$. The time for the particle to move from origin to the point $x=L$, let it be denoted by τ, is

$$
\tau=L / c=p_{0} / f .
$$

So the particle moves to and for between $x=L$ and $x=-L$ with speed c and period $4 \tau=4 p_{0} / f$. The relation between x and t is

$$
\left.\begin{array}{ll}
x=c t, & 0 \leq t \leq \tau \\
x=2 L-c t, & \tau \leq t \leq 2 \tau, \\
x=2 L-c t, & 2 \tau \leq t \leq 3 \tau, \tag{7}\\
x=c t-4 L, & 3 \tau \leq t \leq 4 \tau,
\end{array}\right\}
$$

The required answer is thus as given in Fig. 1 and Fig. 2.

Fig. 1

Fig. 2
2) The total energy of the two-quark system can be expressed as

$$
\begin{equation*}
M c^{2}=\left|p_{1}\right| c+\left|p_{2}\right| c+f\left|x_{1}-x_{2}\right|, \tag{8}
\end{equation*}
$$

where x_{1}, x_{2} are the position coordinates and p_{1}, p_{2} are the momenta of quark 1 and quark 2 respectively. For the rest meson, the total momentum of the two quarks is zero and the two quarks move symmetrically in opposite directions, we have

$$
\begin{equation*}
p=p_{1}+p_{2}=0, \quad p_{1}=-p_{2}, \quad x_{1}=-x_{2} . \tag{9}
\end{equation*}
$$

Let p_{0} denote the momentum of the quark 1 when it is at $x=0$, then we have

$$
\begin{equation*}
M c^{2}=2 p_{0} c \quad \text { or } \quad p_{0}=M c / 2 \tag{10}
\end{equation*}
$$

From Eq. 8, 9 and 10, the half of the total energy can be expressed in terms of p_{1} and x_{1} of quark 1:

$$
\begin{equation*}
p_{0} c=\left|p_{1}\right| c+f\left|x_{1}\right|, \tag{11}
\end{equation*}
$$

just as though it is a one particle problem as in part 1 (Eq. 3) with initial momentum
$p_{0}=M c / 2$. From the answer in part 1 we get the (x, t) diagram and (p, x) diagram of the motion of quark 1 as shown in Figs. 3 and 4. For quark 2 the situation is similar except that the signs are reversed for both x and p; its (x, t) and (p, x) diagrams are shown in Figs. 3 and 4.

The maximum distance between the two quarks as seen from Fig. 3 is

$$
\begin{equation*}
d=2 L=2 p_{0} c / f=M c^{2} / f . \tag{12}
\end{equation*}
$$

Fig. 3

Fig. 4a
Fig. 4b

Quark1
Quark2
3) The reference frame S moves with a constant velocity $V=0.6 c$ relative to the Lab frame $S^{\prime \prime}$ in the x^{\prime} axis direction, and the origins of the two frames are coincident at the beginning $\left(t=t^{\prime}=0\right)$. The Lorentz transformation between these two frames is given by:

$$
\begin{align*}
& x^{\prime}=\gamma(x+\beta c t), \tag{13}\\
& t^{\prime}=\gamma(t+\beta x / c),
\end{align*}
$$

where $\beta=V / c$, and $\gamma=1 / \sqrt{1-\beta^{2}}$. With $V=0.6 c$, we have $\beta=3 / 5$, and $\gamma=5 / 4$. Since the Lorenta transformation is linear, a straight line in the (x, t) diagram
transforms into a straight line the $\left(x^{\prime}, t^{\prime}\right)$ diagram, thus we need only to calculate the coordinates of the turning points in the frame S^{\prime}.

For quark 1, the coordinates of the turning points in the frames S and S^{\prime} are as follows:

Frame S
x_{1}
$0 \quad 0$
$L \quad \tau$
τ
$\gamma(1+\beta) L=2 L$
$2 \gamma \beta L=\frac{3}{2} L$
$\gamma(3 \beta-1) L=L$
$4 \tau \quad 4 \gamma \beta L=3 L$
$0 \quad 2 \tau$

$$
\begin{aligned}
& x_{1}^{\prime}=\gamma\left(x_{1}+\beta c t_{1}\right) \\
= & \frac{5}{4} x_{1}+\frac{3}{4} c t_{1}
\end{aligned}
$$

0
$-L \quad 3 \tau$
$0 \quad 4 \tau$

Frame S^{\prime}

$$
\begin{aligned}
& t_{1}^{\prime}=\gamma\left(t_{1}+\beta x_{1} / e\right) \\
= & \frac{5}{4} t_{1}+\frac{3}{4} x_{1} / c
\end{aligned}
$$

0
$\gamma(1+\beta) \tau=2 \tau$
$2 \gamma \tau=\frac{5}{2} \tau$
$\gamma(3-\beta) \tau=3 \tau$
$4 \gamma \tau=5 \tau$
where $L=p_{0} c / f=M c^{2} / 2 f, \tau=p_{0} / f=M c / 2 f$.
For quark 2, we have
Frame S
Frame S^{\prime}
$x_{2} \quad t_{2}$
$x_{2}^{\prime}=\gamma\left(x_{2}+\beta c t_{2}\right)$
$t_{2}^{\prime}=\gamma\left(t_{2}+\beta x_{2} / c\right)$ $=\frac{5}{4} x_{2}+\frac{3}{4} c t_{2}$ $=\frac{5}{4} t_{2}+\frac{3}{4} x_{2} / c$
$0 \quad 0$
0
$-\gamma(1-\beta) L=-\frac{1}{2} L$
0
$-L \quad \tau$
$2 \gamma \beta L=\frac{3}{2} L$
$\gamma(1-\beta) \tau=\frac{1}{2} \tau$
$0 \quad 2 \tau$
$\gamma(3 \beta+1) L=\frac{7}{2} L$
$2 \gamma \tau=\frac{5}{2} \tau$
$\begin{array}{ll}L & 3 \tau\end{array}$
$4 \gamma \beta L=3 L$
$\gamma(3+\beta) \tau=\frac{9}{2} \tau$
$0 \quad 4 \tau$
$4 \gamma \tau=5 \tau$

With the above results, the $\left(x^{\prime}, t^{\prime}\right)$ diagrams of the two quarks are shown in Fig. 5.
The equations of the straight lines $O A$ and $O B$ are:

$$
\begin{array}{ll}
x_{1}^{\prime}\left(t^{\prime}\right)=c t^{\prime} ; & 0 \leq t^{\prime} \leq \gamma(1+\beta) \tau=2 \tau ; \\
x_{2}^{\prime}\left(t^{\prime}\right)=-c t^{\prime} ; & 0 \leq t^{\prime} \leq \gamma(1-\beta) \tau=\frac{1}{2} \tau \tag{14b}
\end{array}
$$

The distance between the two quarks attains its maximum d^{\prime} when $t^{\prime}=\frac{1}{2} \tau$, thus we have maximum distance

$$
\begin{equation*}
d^{\prime}=2 c \gamma(1-\beta) \tau=2 \gamma(1-\beta) L=\frac{M c^{2}}{2 f} \tag{15}
\end{equation*}
$$

Fig. 5
4) It is given the meson moves with velocity $V=0.6$ crelative to the Lab frame, its energy measured in the Lab frame is

$$
E^{\prime}=\frac{M c^{2}}{\sqrt{1-\beta^{2}}}=\frac{1}{0.8} \times 140=175 \mathrm{MeV}
$$

Grading Scheme

Part 12 points, distributed as follows:
0.4 point for the shape of $x(t)$ in Fig. 1;
0.3 point for 4 equal intervals in Fig. 1;
(0.3 for correct derivation of the formula only)
0.1 each for the coordinates of the turning points A and $C, 0.4$ point in total;
0.4 point for the shape of $p(x)$ in fig. 2 ; (0.2 for correct derivation only)
0.1 each for specification of $p_{0}, L=p_{0} c / f,-p_{0},-L$ and arrows, 0.5 point in total.
(0.05 each for correct calculations of coordinate of turning points only).
Part 24 points, distributed as follows:
0.6 each for the shape of $x_{1}(t)$ and $x_{2}(t), 1.2$ points in total;
0.1 each for the coordinates of the turning points $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and E in Fig. 3, 0.8 point in total;

