PART 1 : DETERMINATION OF py
Basic Insight :

The idea which enables one to "see into” the problem is contained in the following remark: The

oscillation period of a given suspended magnet depends on the product of its moment and the

(horizontal component of) the Earth's field, while the extent to which that magnet can influence the

direction of another magnet used as a compass depends on the ratio of those two quantities.

It follows that by making measurements of both types, both the unknown moment and the

horizontal component of the Earth's field can be determined. We suspect that this idea goes

historically back to Gauss.
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Second Solution : Dynamic Method with 3 Unknowns

Solution, Page 2

The experience from our tests was that the "Turn-Around” method did not occur naturally to most

students. They were much more comfortable with the idea of using one magnet to influence the period of

another. Since the magnetic moments are not necessarily equal, it is clear that two measurements will no

longer suffice. Our guess is that the following 3-measurement scheme will be the most common student

choice.
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Note that the X magnet (positioned at a distance R which is somewhat larger than the turn-around

distance Ro} is being used here to slow the oscillations of the A magnet on the compass.
One worries at first that there are actually 4 unknowns, since the jnertial moment of A need not equal

that of X. Inspection of equations @ and G) shows, however, that the ratio Wy /B, can be expresed



Solution, Page 3
in terms of experimentally known quantities. Since@ gives the product w B, , the calculational

strategy is clear. One easily finds:

n2
R 2n 12 2712

Alternatively, by reversing its poles, one can use the X magnet to speed-up the oscillations of the A
magnet . Then, of course We have T < T,. In this case (which is formally equivalent to the first case,

with a reversal of the sign of K' ), one finds:
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SAMPLE EXPERIMENT
The Dynamic Method just outlined was used (in the case where the X magnet was used to slow down
the oscillations of the A magnet in Arrangement #3). In all cases 20 oscillations were timed. The
distance R was (17.020.1) cm. The X moment of inertia was fx =(495+£0.1)x Hiskg mz. Using the

notation given previously, the data were as follows:

Measurements (in seconds) of 20T, : 10.83, 10.99, 10.91, 10.94. [Arrangement #1]
Measurements (in seconds) of 20T A 1095, 1110, 11.01, 10.92. [Arrangement #2]
Measurements (in seconds) of 20T, : 21.70, 21.65, 21.78, 21.59. [Arrangement #3]

Using a pocket calculator (HP32S) to obtain the averages and statistical errors gives:
Ty = (0.5461.003) sec

T , = (0.550£.004) sec

Tp = (1.084£.004) sec
The "statistical errors™ here are naively bassd on what the calculator gave for the estimated standard
deviation around the sample mean. More carefully, one should divide this by the square root of the
number of observations to give the éstimatec| standard error of the sample mean. [Still more carefully,

for such a small sample, one should apply tte appropriate statistical correction factor]. For simplicity
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we will use the naively calculated results. This will suffice for our purposes.

Wrim@ as U=G F, where

32 112 12
@K)'? Ty

The expression for G is identical for that for j in the "turnaround method" when R=Ry . This must

be true, since in that case T goes to infinity.

Numerically

0.1700.001) m)>2 2 ] 1
o ) m] 5 [(4.9510.1):&101(3“12]!2

"[2x107N/A2 )12 (0.546£.003) sec

then standard error propagation and reduction of the units give

G = (0.401 + 0.006) Am 2

which is a 1.5% uncertainty. For F we find numerically :

(0.550+.004) sec ]2 } 12

F= {roo0 -| (1.084.004) sec

The central value here is 0.862. One can easily use a pocket calculator to see the effects of the
permitted statistical variations in each of the two places above. This shows that the effect of the
numerator uncertainty is essentially £ 0.0022, while that of the denominator is + 0.0013. Combining
these statistically gives an net uncertainty in F of 0.0026, so that the fractional uncertainty in F is

0.0033. [ An analysis of this by calculus is straightforward, but cumbersome.] Then the fractional

uncertainty in {4 X is practically that in G. We find:
My =(0.862 = 0.0026) (0.401% 0.006) Am = (0.346+.005) A nf.

By way of comparison, measurement of the same magnet X using Fluxgate Magnetometry (at a distance

of around 16 cm) gave . = (0345 +.003) A .
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PART 2 : DISTANCE DEPENDENCE OF FIELD OF "B" UNKOWN

Method I (Close Distances) : Nulling of Transverse Static Deflection
Arrangement (top view) Equation
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Method II (Intermediate Distances) : Differential 1/T> Technique

General Relation : T=Ty ; B =local (horiz.) field { 2rT) 2 #Ii
X

Arrangement (top view)
S

DEFINE:
samy=sam?) = T %)

slower

THEN:

B" FASTER AT )= "fB .
4r ]X

where ABy =2B, (x)

x l
] =
——of Compass 2
] 1 2
B, (x)= <ZIX AT ?)
Hx
X
"Master Equation”
B" COMPASS
SLOWER

132



Method III (Large Distances) :

Solution, Page 6

Differential 1[12 Technique with Partial "Bucking"” of the Earth's Field

Arrangement (top view)

NB"
tape "A" magnet
VERY SECURELY
in position: x
S HX"
"A" -—-—- Compass
n
Oriented to produce
a field contribution I

at the compass

opposite in
direction to the '
Earth's field

IIBII

COMPASS
FASTER

COMPASS
SLOWER

"Master Equation"

2
B, (x)= 221X AT ?)
X

remains the same

Use only partial buckout --(slow natural oscillations typically by a factor of 2)

In working at a given distance x, A(1/T g ) must be constant (independent of the "bucking").

AT %) = const,

AT/T L. const, =—————Jm

AT o T °
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Sample Experiment
2Ku (2x1077)T m/A ][0.34640.005)Am?
- 5w K o BT TR OME0E)
R [R (m)]
DATA TABLE FOR METHOD I ;
measured data calculated F;::fm see below |

" x @) Rm) | Byx) (0'T)  ABB  4Avx  (ABB)g

.062+.001 11240.112 493. 031 065 072
.0705+.0015 .133+.0015 294 019 085 087
.0845+0015 .167+.002 149 039 071 081
.102+.0015 .206.005 79 074 059 095

The uncertainty in R includes the ruler reading error, together with the imprecision in locating the null
position, the latter effect becoming predorninant at larger x. The R uncertainty, together with the small
uncertainty in Ky define the AB/B values listed in the 4th column.

Of course there are also the uncertainties in the x values, which we could represent graphically by
horizontal error bars. Since this is technically awkward, we choose instead to define an effective vertical
uncertainty. Since it turns out that the log-log plot slope is about -4, a given fractional error in x
corresponds to 4 times as much in B(x). These fractional errors have been tabulated in the 5th column.

From this it is clear that we should take the effective AB/B as the square root of the sum of the squares

of thecontributions in colums 4 and 5. These values, listed in column 6, form the basis for the error bars

used. Though we would certainly not expect a student to do this, we would expect him to be aware of

the horizontal uncertainties.

Method I1 B, (x)= ZT"ZI-L AT ?) = 282+ .51)x10 Teslase - AUT ?)
® x =(.120+001)m: %
Data in seconds for 20 oscillations: Focket Calculator Results:
20T,,, : 14.56,14.50, 14.52, 14.58 T gow= (:727£.0018)sec
20T, : 11.32,11.34,11.31,11.28 Tl = (.565620013)sec

AQUT ?) = [(3.1257£.0138)-(1.892+ 0095)] sec? = (1.23+:017)sec?
— = B_(x)= (34.7:08)x10' Tesla
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Method ITI Solution, Page 8
Introduced bucking magnet in transverse position to slow oscillations in Earth's Field to about 1.2sec

Master equation is still:

2
/ 2 .

B, (x)= 2% AT ") =282 .51)x10” Tesla sec®- AT *)
X

® x =(.150+.001)m:

Data in seconds for 20 oscillations: Pocket Calculator Results:
20Ty, 27.90,27.80, 27.78, 27.77 T gow= (1.391£.003)sec
20 Tg,, = 19.56 19.66, 19.50, 19.64 Tt = (.9795+.0037)sec

AQ/T %)= [(1.0422+.0079)-(.5171£.0022) Jsé& = (.525+.0082)sec >
—— > B_(x)= (148 3510  Tesla

®x =(.170£.00)m:

Data in seconds for 20 oscillations: Pocket Calculator Results:
20T, : 24.97, 2497, 24.87 T gow= (1.2468+.0029)sec
20T, : 20.55,20.46, 20.79, 20.65 T = (1.03062.00708)sec

AQ/T %)= [(.9415+.013)-(.6433+.0030) Jsec’? = (.298+.013)sec

— > B_(x)= (84£0.4)x10 Tesla

@®x =(.190+.001)m:

Data in seconds for 20 oscillations: Pocket Calculator Results:
20T, : 17.17, 17.15,17.11, 17.10 Tow= (.8566%.0017)sec
20T, : 16.01,15.93,15.91,15.92 T = (.797£.0029)sec

AQUT %) = [(1.574£.028)-(1.3628+.0053) Jsec? = (2112+.029)sec’®
— > B_(x)= (6.0£0.8)x10  Tesla

| @x =(.220+.001)m:

Data in seconds for 20 oscillations: Pocket Calculator Results:
20T, : 23.80,23.76,23.70 Tow= (1.1877+.00252)sec
20T, @ 22.27,21.98,21.86,21.94 T = (1.1006£.0089)sec

AT 2 )= [(.82552.0134)-(.7089+.0030) Jsec’ = (.1166+.014)sec 2

——» B_(r)= (3.3204)x10  Tesla
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DATA TABLE FOR METHODS II and III

standard

calculated * pto;t:::xion see above 1

x (m) Method B,x) (10'T) ABB 4Aux  (AB/B).
.120+.001 I 34.7 023 .033 .040
.150+.001 m 14.8 .024 027 036
.170+.001 m 8.4 .05 024 .055
.190+.001 m 6.0 13 021 13
.220+.001 m 3.3 12 018 12

The equivalent vertical uncertainties have calculated as before and tabulated in the last column above.
These give the error bars on the log-log plot shown on the next page. The three different methods are
nicely consistent, and the whole data set well fits the power law indicated by the drawn line. When this
is done on the regular log paper (as provided), the easiest way in this case to get the slope is to use a
pocket calculator to find the ratio of the log of the vertical rise ratio to that of the horizontal run ratio for
the possible lines consistent with the errors. Since the line has to drop vertically through three decades in

total, this is roughly 3
slope = =-39%0.15
log (0.30£.02) ]

01 (051+.03)

For this particular unknown, the fluxgate magnetometer data gave an effective exponent of -3.92
over the range from 0.07m to 0.22m. A more detailed absolute comparison with those measurements is
shown on the second graph. Here the drawn line corresponds to the actual magnetometer data. The
student experiment is clearly doing an excellent job. Of particular interest is the next to the lowest
point (x=0.19m). For this point, the "buckout" magnet had been moved out a little bit so that the
natural compass period in the Earth's field was about 0.89 sec., which was close to the period of the
“pendulum mode". This was done deliberately to test the effectiveness of the copper wire
"mode-decoupler”. The point at x=0.19 m which is gn the line was taken ysing the decoupler. The
point at the same x value which is almost a factor of 3 higher than the line was taken without the
decoupler.

This shows that the decoupler is both effective and important. Without it, the "fast” and "slow"

measurements are cffected differently by the coupling to the pendulum mode. Then the small

difference between them can be yery poorly determined.
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Experimental Problem 2:

Part 1

2.5 points

1.5 points

0 - 1 points (sliding scale)
0 - 1 points (sliding scale)

Part 2

1.0 points

1.0 points

0 - 1 points (sliding scale)
0 - 1 points (sliding scale)

rading Schem

Show how uy is calculated, clearly labeled diagram
iy is correctly stated

error analysis

consistency with “correct” range

A diagram of a technique that can be used
Correct measurements at 3 distances at least
Accuracy of the result (correct value of p)
Precision and error analysis
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