
Solution 
 
As the system is isolated, its total energy, i.e. the sum of the kinetic and potential 

energies, is conserved. The total potential energy of the points P1, P2 and P3 with the masses 

1m , 2m  and 3m  in the inertial system (i.e. when there are no inertial forces) is equal to the 

sum of the gravitational potential energies of all the pairs of points (P1,P2), (P2,P3) and (P1,P3). 
It depends only on the distances 12a , 23a  and 23a  which are constant in time. Thus, the total 

potential energy of the system is constant. As a consequence the kinetic energy of the system 
is constant too. The moment of inertia of the system with respect to the axis   depends only 
on the distances from the points P1, P2 and P3 to the axis   which, for fixed 12a , 23a  and 23a  

do not depend on time. This means that the moment of inertia I  is constant. Therefore, the 
angular velocity of the system must also be constant: 

  const. (1) 

This is the first condition we had to find. The other conditions will be determined by 
using three methods described below. However, prior to performing calculations, it is 
desirable to specify a convenient coordinates system in which the calculations are expected to 
be simple. 

Let the positions of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  be given by 

the vectors 1r , 2r  and 3r . For simplicity we assume that the origin of the coordinate system is 

localized at the center of mass of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  and 

that all the vectors 1r , 2r  and 3r  are in the same coordinate plane, e.g. in the plane (x,y). Then 

the axis   is the axis z . 
In this coordinate system, according to the definition of the center of mass, we have: 

 0321  221 rrr mmm  (2) 

Now we will find the second condition by using several methods. 

FIRST METHOD 

Consider the point P1 with the mass 1m . The points P2 and P3 act on it with the forces: 

 ),( 123
12

21
21 rrF 

a

mm
G  (3) 

 ).( 133
13

31
31 rrF 

a

mm
G  (4) 

where G denotes the gravitational constant. 

In the inertial frame the sum of these forces is the centripetal force 
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which causes the movement of the point P1 along a circle with the angular velocity  . (The 
moment of this force with respect to the axis   is equal to zero.) Thus, we have: 

 .13121 rFFF   (5) 

In the non-inertial frame, rotating around the axis   with the angular velocity  , the 
sum of the forces (3), (4) and the centrifugal force 
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should be equal to zero: 

 .0' 13121  rFFF  (6) 

(The moment of this sum with respect to any axis equals to zero.) 

The conditions (5) and (6) are equivalent. They give the same vector equality: 
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From the formula (2), we get: 

 331122 rrr mmm   (8) 

Using this relation, we write the formula (7) in the following form: 
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i.e. 
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The vectors 1r  and 3r  are non-col1inear. Therefore, the coefficients in the last formula 

must be equal to zero: 
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The first equality leads to: 
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and hence, 

1213 aa  . 

Let aaa  1213 . Then the second equality gives: 

 GMa 32  (9) 

where 

 321 mmmM   (10) 

denotes the total mass of the system. 

In the same way, for the points P2 and P3, one gets the relations: 



a) the point P2: 

1223 aa  ;     GMa 32  

b) the point P3: 

2313 aa  ;     GMa 32  

Summarizing, the system can rotate as a rigid body if all the distances between the 
masses are equal: 

 aaaa  132312 , (11) 

the angular velocity   is constant and the relation (9) holds. 

SECOND METHOD 

At the beginning we find the moment of inertia I  of the system with respect to the axis 
 . Using the relation (2), we can write: 
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 Of course, 
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The quantities jirr2 (i, j = 1, 2, 3) can be determined from the following obvious relation: 
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We get: 
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With help of this relation, after simple transformations, we obtain: 
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The moment of inertia I  of the system with respect to the axis  , according to the definition 
of this quantity, is equal to 
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The last two formulae lead to the following expression: 
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where M (the total mass of the system) is defined by the formula (10). 

In the non-inertial frame, rotating around the axis   with the angular velocity  , the 
total potential energy totV  is the sum of the gravitational potential energies 
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of the masses im  (i = 1, 2, 3) in the field of the centrifugal force: 
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A mechanical system is in equilibrium if its total potential energy has an extremum. In 
our case the total potential energy totV  is a sum of three terms. Each of them is proportional 

to: 
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The extrema of this function can be found by taking its derivative with respect to a and 
requiring this derivative to be zero. We get: 
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It leads to: 

GMa 32     or    ).( 321
32 mmmGa   

We see that all the terms in totV  have extrema at the same values of aaij  . (In addition, 

the values of a and   should obey the relation written above.) It is easy to show that it is a 
maximum. Thus, the quantity totV  has a maximum at aaij  . 

This means that our three masses can remain in fixed distances only if these distances 
are equal to each other: 

aaaa  132312  

and if the relation 

GMa 32 , 

where M the total mass of the system, holds. We have obtained the conditions (9) and (11) 
again. 

THIRD METHOD 

Let us consider again the point P1 with the mass 1m  and the forces 21F  and 31F  given by 

the formulae (3) and (4). It follows from the text of the problem that the total moment (with 
respect to any fixed point or with respect to the mass center) of the forces acting on the point 
P1 must be equal to zero. Thus, we have: 

0131121  rFrF  

where the symbol   denotes the vector product. Therefore 
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Using the formula (8), the last relation can be written as follows: 
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The vectors 1r  and 3r  are non-col1inear (and different from 0). Therefore 
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hence, 

.1312 aa   

Similarly, one gets: 

).(  2312 aaa   

We have re-derived the condition (11). 

Taking into account that all the distances ija  have the same value a, from the equation 

(7) concerning the point P1, using the relation (2) we obtain: 
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This is the condition (9). The same condition is got in result of similar calculations for the 
points P2 and P3. 



The method described here does not differ essentially from the first method. In fact 
they are slight modifications of each other. However, it is interesting to notice how 
application of a proper mathematical language, e.g. the vector product, simplifies the 
calculations. 

The relation (9) can be called a “generalized Kepler’s law” as, in fact, it is very similar 
to the Kepler’s law but with respect to the many-body system. As far as I know this 
generalized Kepler’s law was presented for the first time right at the 20th IPhO. 

 
Marking scheme 
 
1. the proof that  const 1 point 
2. the conditions at the equilibrium (conditions for the forces  

and their moments or extremum of the total potential energy) 3 points 
3. the proof of the relation aaij   4 points 

4. the proof of the relation GMa 32  2 points 
 
Remarks and typical mistakes in the pupils' solutions 
 
No type of error was observed as predominant in the pupils' solutions. Practically all the 

mistakes can be put down to the students' scant experience in calculations and general lack of 
skill. Several students misunderstood the text of the problem and attempted to prove that the 
three masses should be equal. Of course, this was impossible. Moreover, it was pointless, 
since the masses were given. Almost all the participants tried to solve the problem by 
analyzing equilibrium of forces and/or their moments. Only one student tried to solve the 
problem by looking for a minimum of the total potential energy (unfortunately, his solution 
was not fully correct). Several participants solved the problem using a convenient reference 
system: one mass in the origin and one mass on the x-axis. One of them received a special 
prize. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


