Problem 2

Three non-collinear points P_{1}, P_{2} and P_{3}, with known masses m_{1}, m_{2} and m_{3}, interact with one another through their mutual gravitational forces only; they are isolated in free space and do not interact with any other bodies. Let σ denote the axis going through the center-ofmass of the three masses, and perpendicular to the triangle $P_{1} P_{2} P_{3}$. What conditions should the angular velocities ω of the system (around the axis σ) and the distances:

$$
P_{1} P_{2}=a_{12}, \quad P_{2} P_{3}=a_{23}, \quad P_{1} P_{3}=a_{13},
$$

fulfill to allow the shape and size of the triangle $P_{1} P_{2} P_{3}$ unchanged during the motion of the system, i.e. under what conditions does the system rotate around the axis σ as a rigid body?

