Problem 2

Three non-collinear points P_1 , P_2 and P_3 , with known masses m_1 , m_2 and m_3 , interact with one another through their mutual gravitational forces only; they are isolated in free space and do not interact with any other bodies. Let σ denote the axis going through the center-ofmass of the three masses, and perpendicular to the triangle $P_1P_2P_3$. What conditions should the angular velocities ω of the system (around the axis σ) and the distances:

$$P_1P_2 = a_{12}, \quad P_2P_3 = a_{23}, \quad P_1P_3 = a_{13},$$

fulfill to allow the shape and size of the triangle $P_1P_2P_3$ unchanged during the motion of the system, i.e. under what conditions does the system rotate around the axis σ as a rigid body?