Solution

2.1

Connect the circuit as shown in fig. 19.17
R_{X}.... resistance to be determined
R known value of resistance
Measure potential difference across R_{X} and R . Chose the value of R which gives comparable value of potential difference across R_{X}.
In this particular case $R=47,5 \Omega$

Fig. 19.17
$\frac{R_{x}}{R}=\frac{V_{x}}{V}$
where V_{X} and V are values of potential differences across R_{X} and R respectively.
R_{X} can be calculated from the above equation.
(The error in R_{X} depends on the errors of V_{X} and V_{R}).

2.2

Connect the circuit as shown in fig. 19.18

- Begin the experiment by measuring the resistance R_{0} of the tungsten cathode when there is no heating current
- Add resistor $\mathrm{R}=1000 \Omega$ into the cathode circuit, determine resistance R_{1} of the tungsten cathode, calculate the resistance of the current-carrying cathode.
- Repeat the experiment, using the resistor

Fig 19.18 $\mathrm{R}=100 \Omega$ in the cathode circuit, determine resistance R_{2} of tungsten cathode with heating current in the circuit.

- Repeat the experiment, using the resistor $\mathrm{R}=47,5 \Omega$ in the cathode circuit, determine resistance R_{3} of tungsten cathode with heating current in the circuit.
- Plot a graph of $\frac{R_{1}}{R_{0}}, \frac{R_{2}}{R_{0}}$ and $\frac{R_{3}}{R_{0}}$ as a function of temperature, put the value of $\frac{R_{0}}{R_{0}}=1$ to coincide with room temperature i.e. $18^{\circ} \mathrm{C}$ approximately and draw the remaining part of the graph parallel to the graph of specific resistance as a function of temperature provided in the problem. From the graph, read values of the temperature of the cathode $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} in Kelvin.

IPHO-1988 Bad Ischl / Austria

Problems and Solutions

Fig 19.19

From the equation

$$
I=C \cdot T^{2} \cdot e^{-\frac{W}{k \cdot T}}
$$

we get
$\ln \frac{1}{T^{2}}=-\frac{W}{k \cdot T}+\ln C$
Plot a graph of $\ln \frac{1}{\mathrm{~T}^{2}}$ against $\frac{1}{\mathrm{~T}}$.
The curve is linear. Determine the slope m from this graph. $\quad-m=-\frac{W}{k}$
Work function W can be calculated using known values of m and k (given in the problem).
Error in W depends on the error of T which in turn depends on the error of measured R .

