## **Solution**

## 2.1

Connect the circuit as shown in fig. 19.17

R<sub>X</sub> .... resistance to be determined R ..... known value of resistance

Measure potential difference across  $R_X$  and R. Chose the value of R which gives comparable value of potential difference across R<sub>X</sub>.

In this particular case  $R = 47.5 \Omega$ 

$$\frac{\mathsf{R}_{\mathsf{X}}}{\mathsf{R}} = \frac{\mathsf{V}_{\mathsf{X}}}{\mathsf{V}}$$

where  $V_X$  and V are values of potential differences across  $R_X$  and R respectively.  $R_X$  can be calculated from the above equation.

(The error in  $R_X$  depends on the errors of  $V_X$  and  $V_R$ ).

## 2.2

Connect the circuit as shown in fig. 19.18

- Begin the experiment by measuring the • resistance  $R_0$  of the tungsten cathode when there is no heating current
- Add resistor  $R = 1000 \Omega$  into the cath-• ode circuit, determine resistance R1 of the tungsten cathode, calculate the resistance of the current-carrying cathode.
- Repeat the experiment, using the resistor •  $R = 100 \Omega$  in the cathode circuit, deter-



Fig 19.18

mine resistance R<sub>2</sub> of tungsten cathode with heating current in the circuit.

- Repeat the experiment, using the resistor  $R = 47,5 \Omega$  in the cathode circuit, determine • resistance R<sub>3</sub> of tungsten cathode with heating current in the circuit.
- Plot a graph of  $\frac{R_1}{R_0}$ ,  $\frac{R_2}{R_0}$  and  $\frac{R_3}{R_0}$  as a function of temperature, put the value of •

 $\frac{R_0}{R_0} = 1$  to coincide with room temperature i.e. 18°C approximately and draw the re- $R_0$ 

maining part of the graph parallel to the graph of specific resistance as a function of temperature provided in the problem. From the graph, read values of the temperature of the cathode  $T_1$ ,  $T_2$  and  $T_3$  in Kelvin.







Fig 19.19

From the equation 
$$I = C \cdot T^2 \cdot e^{-\frac{W}{K \cdot T}}$$
  
we get  $In\frac{I}{T^2} = -\frac{W}{k \cdot T} + InC$ 

Plot a graph of  $\ln \frac{1}{T^2}$  against  $\frac{1}{T}$ .

The curve is linear. Determine the slope m from this graph.

 $-m = -\frac{W}{k}$ 

Work function W can be calculated using known values of m and k (given in the problem). Error in W depends on the error of T which in turn depends on the error of measured R.