Theory 3
 Recombination of Positive and Negative Ions in Ionized Gas

Introduction

A gas consists of positive ions of some element (at high temperature) and electrons. The positive ion belongs to an atom of unknown mass number Z . It is known that this ion has only one electron in the shell (orbit).
Let this ion be represented by the symbol $\mathrm{A}^{(\mathrm{Z}-1)+}$

Constants:

$$
\begin{array}{ll}
\text { electric field constant } & \varepsilon_{\mathrm{O}}=8,85 \cdot 10^{-12} \frac{\mathrm{~A} \cdot \mathrm{~s}}{\mathrm{~V} \cdot \mathrm{~m}} \\
\text { elementary charge } & \mathrm{e}= \pm 1,602 \cdot 10^{-19} \mathrm{~A} \cdot \mathrm{~s} \\
& \mathrm{q}^{2}=\frac{\mathrm{e}^{2}}{4 \cdot \pi \cdot \varepsilon_{\mathrm{O}}}=2,037 \cdot 10^{-28} \mathrm{~J} \cdot \mathrm{~m} \\
\text { Planck's constant } & \hbar=1,054 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
\text { (rest) mass of an electron } & \mathrm{m}_{\mathrm{e}}=9,108 \cdot 10^{-31} \mathrm{~kg} \\
\text { Bohr's atomic radius } & \mathrm{r}_{\mathrm{B}}=\frac{\hbar}{\mathrm{m} \cdot \mathrm{q}^{2}}=5,92 \cdot 10^{-11} \mathrm{~m} \\
\text { Rydberg's energy } & \mathrm{E}_{\mathrm{R}}=\frac{\mathrm{q}^{2}}{2 \cdot \mathrm{r}_{\mathrm{B}}}=2,180 \cdot 10^{-18} \mathrm{~J} \\
\text { (rest) mass of a proton } & \mathrm{m}_{\mathrm{P}} \cdot \mathrm{c}^{2}=1,503 \cdot 10^{-10} \mathrm{~J}
\end{array}
$$

Questions:

3.1

Assume that the ion which has just one electron left the shell.
$\mathrm{A}^{(\mathrm{Z}-1)+}$ is in the ground state.
In the lowest energy state, the square of the average distance of the electron from the nucleus or r^{2} with components along $\mathrm{x}-$, y - and z -axis being $(\Delta \mathrm{x})^{2},(\Delta \mathrm{y})^{2}$ and $(\Delta \mathrm{z})^{2}$ respectively and $r_{0}^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2} \quad$ and also the square of the average momentum by $p_{o}^{2}=\left(\Delta p_{x}\right)^{2}+\left(\Delta p_{y}\right)^{2}+\left(\Delta p_{z}\right)^{2}$, whereas $\Delta p_{x} \geq \frac{\hbar}{2 \cdot \Delta x}, \Delta p_{y} \geq \frac{\hbar}{2 \cdot \Delta y}$ and $\Delta p_{z} \geq \frac{\hbar}{2 \cdot \Delta z}$.
Write inequality involving $\left(\mathrm{p}_{\mathrm{o}}\right)^{2} \cdot\left(\mathrm{r}_{\mathrm{O}}\right)^{2}$ in a complete form.

3.2

The ion represented by $\mathrm{A}^{(\mathrm{Z}-1)+}$ may capture an additional electron and consequently emits a photon.
Write down an equation which is to be used for calculation the frequency of an emitted photon.

3.3

Calculate the energy of the ion $\mathrm{A}^{(\mathrm{Z}-1)+}$ using the value of the lowest energy. The calculation should be approximated based on the following principles:

3.3.A

The potential energy of the ion should be expressed in terms of the average value of $\frac{1}{r}$.
(ie. $\frac{1}{r_{\mathrm{O}}} ; r_{0}$ is given in the problem).

3.3.B

In calculating the kinetic energy of the ion, use the average value of the square of the momentum given in 3.1 after being simplified by $\left(\mathrm{p}_{\mathrm{o}}\right)^{2} \cdot\left(\mathrm{r}_{\mathrm{o}}\right)^{2} \approx(\hbar)^{2}$

3.4

Calculate the energy of the ion $\mathrm{A}^{(\mathrm{Z}-2)+}$ taken to be in the ground state, using the same principle as the calculation of the energy of $\mathrm{A}^{(Z-1)+}$. Given the average distance of each of the two electrons in the outermost shell (same as r_{0} given in 3.3) denoted by r_{1} and r_{2}, assume the average distance between the two electrons is given by $r_{1}+r_{2}$ and the average value of the square of the momentum of each electron obeys the principle of uncertainty ie.
$\mathrm{p}_{1}^{2} \cdot \mathrm{r}_{1}^{2} \approx \hbar^{2}$ and $\mathrm{p}_{2}^{2} \cdot \mathrm{r}_{2}^{2} \approx \hbar^{2}$
hint: Make use of the information that in the ground state $r_{1}=r_{2}$

3.5

Consider in particular the ion $\mathrm{A}^{(\mathrm{Z}-2)+}$ is at rest in the ground state when capturing an additional electron and the captured electron is also at rest prior to the capturing. Determine the numerical value of Z , if the frequency of the emitted photon accompanying electron capturing is $2,057 \cdot 10^{17} \mathrm{rad} / \mathrm{s}$. Identify the element which gives rise to the ion.

