Solution of problem 3:

a)

Current law: $\quad \mathrm{I}_{\mathrm{L}_{\mathrm{n}-1}}+\mathrm{I}_{\mathrm{C}_{\mathrm{n}}}-\mathrm{I}_{\mathrm{L}_{\mathrm{n}}}=0$
Voltage law: $\quad V_{C_{n-1}}+V_{L_{n-1}}-V_{C_{n}}=0$

Capacitive voltage drop: $\mathrm{V}_{\mathrm{C}_{\mathrm{n}-1}}=\frac{1}{\omega \cdot \mathrm{C}} \cdot \tilde{\mathrm{I}}_{\mathrm{C}_{n-1}}$
Note: In eq. (3) $\tilde{\mathrm{I}}_{\mathrm{C}_{n-1}}$ is used instead of $\mathrm{I}_{\mathrm{C}_{\mathrm{n}-1}}$ because the current leads the voltage by 90°. Inductive voltage drop: $\quad V_{L_{n-1}}=\omega \cdot L \cdot \tilde{I}_{L_{n-1}}$

Note: In eq. (4) $\tilde{\mathrm{L}}_{\mathrm{L}_{\mathrm{n}-1}}$ is used instead of $\mathrm{I}_{\mathrm{L}_{\mathrm{n}-1}}$ because the current lags behind the voltage by 90°.

The voltage $\mathrm{V}_{\mathrm{C}_{\mathrm{n}}}$ is given by: $\mathrm{V}_{\mathrm{C}_{\mathrm{n}}}=\mathrm{V}_{0} \cdot \sin (\omega \cdot \mathrm{t}+\mathrm{n} \cdot \varphi)$
Formula (5) follows from the problem.
From eq. (3) and eq. (5): $\mathrm{I}_{\mathrm{C}_{\mathrm{n}}}=\omega \cdot \mathrm{C} \cdot \mathrm{V}_{0} \cdot \cos (\omega \cdot \mathrm{t}+\mathrm{n} \cdot \varphi)$
From eq. (4) and eq. (2) and with eq. (5)

$$
\begin{align*}
& I_{L_{n-1}}=\frac{V_{0}}{\omega \cdot L} \cdot\left[2 \cdot \sin \left(\omega \cdot t+\left(n-\frac{1}{2}\right) \cdot \varphi\right) \cdot \sin \frac{\varphi}{2}\right] \tag{7}\\
& I_{L_{n}}=\frac{V_{0}}{\omega \cdot L} \cdot\left[2 \cdot \sin \left(\omega \cdot t+\left(n+\frac{1}{2}\right) \cdot \varphi\right) \cdot \sin \frac{\varphi}{2}\right] \tag{8}
\end{align*}
$$

Eqs. (6), (7) and (8) must satisfy the current law. This gives the dependence of φ on ω, L and C.

$$
0=\mathrm{V}_{0} \cdot \omega \cdot \mathrm{C} \cdot \cos (\omega \cdot \mathrm{t}+\mathrm{n} \cdot \varphi)+2 \cdot \frac{\mathrm{~V}_{0}}{\omega \cdot \mathrm{~L}} \cdot \sin \frac{\varphi}{2} \cdot\left[2 \cdot \cos (\omega \cdot \mathrm{t}+\mathrm{n} \cdot \varphi) \cdot \sin \left(-\frac{\varphi}{2}\right)\right]
$$

This condition must be true for any instant of time. Therefore it is possible to divide by $\mathrm{V}_{0} \cdot \cos (\omega \cdot \mathrm{t}+\mathrm{n} \cdot \varphi)$.

Hence $\omega^{2} \cdot \mathrm{~L} \cdot \mathrm{C}=4 \cdot \sin ^{2}\left(\frac{\varphi}{2}\right)$. The result is
$\varphi=2 \cdot \arcsin \left(\frac{\omega \cdot \sqrt{\mathrm{~L} \cdot \mathrm{C}}}{2}\right)$ with $0 \leq \omega \leq \frac{2}{\sqrt{\mathrm{~L} \cdot \mathrm{C}}}$
b) The distance ℓ is covered in the time $\Delta \mathrm{t}$ thus the propagation velocity is

$$
\begin{equation*}
\mathrm{v}=\frac{\ell}{\Delta \mathrm{t}}=\frac{\omega \cdot \ell}{\varphi} \quad \text { or } \quad \mathrm{v}=\frac{\omega \cdot \ell}{2 \cdot \arcsin \left(\frac{\omega \cdot \sqrt{\mathrm{~L} \cdot \mathrm{C}}}{2}\right)} \tag{10}
\end{equation*}
$$

c)

Slightly dependent means $\operatorname{arc} \sin \left(\frac{\omega \cdot \sqrt{\mathrm{L} \cdot \mathrm{C}}}{2}\right) \sim \omega$, since v is constant in that case.
This is true only for small values of ω. That means $\frac{\omega \cdot \sqrt{L \cdot C}}{2} \ll 1$ and therefore

$$
\begin{equation*}
\mathrm{v}_{0}=\frac{\ell}{\sqrt{\mathrm{L} \cdot \mathrm{C}}} \tag{11}
\end{equation*}
$$

d) The energy is conserved since only inductances and capacitances are involved. Using the terms of a) one obtains the capacitive energy

$$
\begin{equation*}
\mathrm{W}_{\mathrm{C}}=\sum_{\mathrm{n}} \frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{~V}_{\mathrm{C}_{\mathrm{n}}}^{2} \tag{12}
\end{equation*}
$$

and the inductive energy

$$
\begin{equation*}
\mathrm{W}_{\mathrm{L}}=\sum_{\mathrm{n}} \frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}_{\mathrm{n}}}{ }^{2} \tag{13}
\end{equation*}
$$

From this follows the standard form of the law of conservation of energy

$$
\begin{equation*}
\mathrm{W}_{\mathrm{C}}=\sum_{\mathrm{n}} \frac{1}{2}\left(\mathrm{C} \cdot \mathrm{~V}_{\mathrm{C}_{\mathrm{n}}}{ }^{2}+\mathrm{L} \cdot \mathrm{I}_{\mathrm{L}_{\mathrm{n}}}{ }^{2}\right) \tag{14}
\end{equation*}
$$

The relation to mechanics is not recognizable in this way since two different physical quantities ($\mathrm{V}_{\mathrm{C}_{\mathrm{n}}}$ and $\mathrm{I}_{\mathrm{L}_{\mathrm{n}}}$) are involved and there is nothing that corresponds to the relation between the locus x and the velocity $\mathrm{v}=\dot{\mathrm{x}}$.

To produce an analogy to mechanics the energy has to be described in terms of the charge Q , the current $\mathrm{I}=\dot{\mathrm{Q}}$ and the constants L and C. For this purpose the voltage $\mathrm{V}_{\mathrm{C}_{n}}$ has to be expressed in terms of the charges $\mathrm{Q}_{\mathrm{L}_{n}}$ passing through the coil.

One obtains:

$$
\begin{equation*}
\mathrm{W}=\sum_{\mathrm{n}}[\underbrace{\frac{\mathrm{~L}}{2} \cdot \dot{\mathrm{Q}}_{\mathrm{L}_{n}}{ }^{2}}_{\mathrm{A}}+\underbrace{\frac{1}{2 \cdot \mathrm{C}}\left(\mathrm{Q}_{\mathrm{L}_{\mathrm{n}}}-\mathrm{Q}_{\mathrm{L}_{\mathrm{n}-1}}\right)^{2}}_{\mathrm{B}}] \tag{15}
\end{equation*}
$$

Mechanical analogue:

A (kinetic part):

$\mathrm{L} \longrightarrow \mathrm{m}$

B (potential part):
$\mathrm{Q}_{\mathrm{L}_{\mathrm{n}}} \longrightarrow \mathrm{X}_{\mathrm{n}}$
x_{n} : displacement and v_{n} : velocity.
However, $\mathrm{Q}_{\mathrm{L}_{\mathrm{n}}}$ could equally be another quantity (e.g. an angle). L could be e.g. a moment of inertia.

From the structure of the problems follows: Interaction only with the nearest neighbour (the force rises linearly with the distance). A possible model could be:

Another model is:

