Solution of problem 1:

1. Temperature T_{1} where the cloud ceiling forms
$\mathrm{T}_{1}=\mathrm{T}_{0} \cdot\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{0}}\right)^{1-\frac{1}{\mathrm{x}}}=279 \mathrm{~K}$
2. Height h_{1} of the cloud ceiling:
$p_{0}-p_{1}=\frac{\rho_{0}+\rho_{1}}{2} \cdot g \cdot h_{1}$, with $\rho_{1}=\rho_{0} \cdot \frac{p_{1}}{p_{0}} \cdot \frac{T_{0}}{T_{1}}$.
$\mathrm{h}_{1}=1410 \mathrm{~m}$
3. Temperature T_{2} at the ridge of the mountain.

The temperature difference when the air is ascending from the cloud ceiling to the mountain ridge is caused by two processes:

- adiabatic cooling to temperature T_{x},
- heating by $\Delta \mathrm{T}$ by condensation.

$$
\begin{align*}
& \mathrm{T}_{2}=\mathrm{T}_{\mathrm{x}}+\Delta \mathrm{T} \tag{3}\\
& \mathrm{~T}_{\mathrm{x}}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{1-\frac{1}{\mathrm{x}}}=265 \mathrm{~K} \tag{4}
\end{align*}
$$

For each kg of air the heat produced by condensation is $\mathrm{L}_{\mathrm{v}} \cdot 2.45 \mathrm{~g}=6.125 \mathrm{~kJ}$.

$$
\begin{align*}
& \Delta \mathrm{T}=\frac{6.125}{\mathrm{c}_{\mathrm{p}}} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}=6.1 \mathrm{~K} \tag{5}\\
& \mathrm{~T}_{2}=271 \mathrm{~K} \tag{6}
\end{align*}
$$

4. Height of precipitated water column

$$
\begin{equation*}
\mathrm{h}=35 \mathrm{~mm} \tag{7}
\end{equation*}
$$

5. Temperature T_{3} behind the mountain

$$
\begin{equation*}
\mathrm{T}_{3}=\mathrm{T}_{2} \cdot\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{2}}\right)^{1-\frac{1}{x}}=300 \mathrm{~K} \tag{8}
\end{equation*}
$$

The air has become warmer and dryer. The temperature gain is caused by condensation of vapour.

