2.(i)

Figure 2.1

$$
\mathrm{EX}=2 R \sin \theta \quad \therefore t=\frac{2 R \sin \theta}{v}
$$

where $v=v_{P}$ for P waves and $v=v_{S}$ for S waves.
This is valid providing X is at an angular separation less than or equal to X^{\prime}, the tangential ray to the liquid core. X^{\prime} has an angular separation given by, from the diagram,

$$
2 \phi=2 \cos ^{-1}\left(\frac{R_{C}}{R}\right)
$$

Thus

$$
t=\frac{2 R \sin \theta}{v}, \quad \text { for } \theta \leq \cos ^{-1}\left(\frac{R_{C}}{R}\right)
$$

where $v=v_{\mathrm{P}}$ for P waves and $v=v_{\mathrm{S}}$ for shear waves.
(ii) $\frac{R_{C}}{R}=0.5447 \quad$ and $\quad \frac{v_{C P}}{v_{P}}=0.831 .3$

Figure 2.2

From Figure 2.2

$$
\begin{equation*}
\theta=A \hat{O} C+\hat{E O} A \Rightarrow \theta=(90-r)+(1-\alpha) \tag{1}
\end{equation*}
$$

(ii) Continued

Snell's Law gives:
$\frac{\sin i}{\sin r}=\frac{v_{P}}{v_{C P}}$.
From the triangle EAO, sine rule gives
$\frac{R_{C}}{\sin x}=\frac{R}{\sin i}$.
Substituting (2) and (3) into (1)
$\theta=\left[90-\sin ^{-1}\left(\frac{v_{C P}}{v_{P}} \sin i\right)+i-\sin ^{-1}\left(\frac{R_{C}}{R} \sin i\right)\right]$
(iii)

For Information Only

For minimum $\theta, \frac{d \theta}{d i}=0 . \Rightarrow 1-\frac{\left(\frac{v_{C P}}{v_{P}}\right) \cos i}{\sqrt{1-\left(\frac{v_{C P}}{v_{P}} \sin i\right)^{2}}}-\frac{\left(\frac{R_{C}}{R}\right) \cos i}{\sqrt{1-\left(\frac{R_{C}}{R} \sin i\right)^{2}}}=0$
Substituting $i=55.0^{\circ}$ gives LHS $=0$, this verifying the minimum occurs at this value of i. Substituting $i=55.0^{\circ}$ into (4) gives $\theta=75.8^{\circ}$.

Plot of θ against i.

Substituting into 4:
$i=0 \quad$ gives $\quad \theta=90$
$i=90^{\circ} \quad$ gives $\quad \theta=90.8^{\circ}$
Substituting numerical values for $i=0 \rightarrow 90^{\circ}$ one finds a minimum value at $i=55^{\circ}$; the minimum values of $0, \theta_{\text {MIN }}=75 \cdot 8^{\circ}$.

Physical Consequence

As θ has a minimum value of $75 \cdot 8^{\circ}$ observers at position for which $2 \theta<151 \cdot 6^{\circ}$ will not observe the earthquake as seismic waves are not deviated by angles of less than $151 \cdot 6^{\circ}$. However for $2 \theta \leq 114^{\circ}$ the direct, non-refracted, seismic waves will reach the observer.

$0 \quad \theta_{C}=\cos ^{-1}\left(\frac{R_{C}}{R}\right) \quad \theta_{\min } \quad 90^{0}$
180^{0}
90°
(iv) Using the result
$t=\frac{2 r \sin \theta}{v}$
the time delay Δt is given by
$\Delta t=2 R \sin \theta\left[\frac{1}{v_{S}}-\frac{1}{v_{P}}\right]$
Substituting the given data

$$
131=2(6370)\left[\frac{1}{6.31}-\frac{1}{10.85}\right] \sin \theta
$$

Therefore the angular separation of E and X is
$2 \theta=17.84^{\circ}$
This result is less than $2 \cos ^{-1}\left(\frac{R_{C}}{R}\right)=2 \cos ^{-1}\left(\frac{3470}{6370}\right)=114^{\circ}$
And consequently the seismic wave is not refracted through the core.
(v)

The observations are most likely due to reflections from the mantle-core interface. Using the symbols given in the diagram, the time delay is given by

$$
\begin{aligned}
& \Delta t^{\prime}=(\mathrm{ED}+\mathrm{DX})\left[\frac{1}{v_{S}}-\frac{1}{v_{P}}\right] \\
& \Delta t^{\prime}=2(\mathrm{ED})\left[\frac{1}{v_{S}}-\frac{1}{v_{P}}\right] \text { as } \mathrm{ED}=\mathrm{EX} \text { by symmetry }
\end{aligned}
$$

In the triangle EYD,

$$
\begin{array}{ll}
(\mathrm{ED})^{2}=(R \sin \theta)^{2}+\left(R \cos \theta-R_{C}\right)^{2} \\
(\mathrm{ED})^{2}=R^{2}+R_{C}^{2}-2 R R_{C} \cos \theta & \sin ^{2} \theta+\cos ^{2} \theta=1
\end{array}
$$

Therefore

$$
\Delta t^{\prime}=2 \sqrt{R^{2}+R_{C}^{2}-2 R R_{C} \cos \theta}\left[\frac{1}{v_{S}}-\frac{1}{v_{P}}\right]
$$

Using (ii)

$$
\begin{aligned}
& \Delta t^{\prime}=\frac{\Delta t}{R \sin \theta} \sqrt{R^{2}+R_{C}^{2}-2 R R_{C} \cos \theta} \\
& \Rightarrow 396.7 \mathrm{~s} \text { or } 6 \mathrm{~m} 37 \mathrm{~s}
\end{aligned}
$$

Thus the subsequent time interval, produced by the reflection of seismic waves at the mantle core interface, is consistent with angular separation of 17.84^{0}.

