Answers Question 1

(i) Vector Diagram

If the phase of the light from the first slit is zero, the phase from second slit is

$$
\phi=\frac{2 \pi}{\lambda} d \sin \theta
$$

Adding the two waves with phase difference ϕ where $\xi=2 \pi\left(f t-\frac{x}{\lambda}\right)$,

$$
\begin{aligned}
& a \cos (\xi+\phi)+a \cos (\xi)=2 a \cos (\phi / 2)(\xi+\phi / 2) \\
& a \cos (\xi+\phi)+a \cos (\xi)=2 a \cos \beta\{\cos (\xi+\beta)\}
\end{aligned}
$$

This is a wave of amplitude $A=2 a \cos \beta$ and phase β. From vector diagram, in isosceles triangle OPQ,

$$
\beta=\frac{1}{2} \phi=\frac{\pi}{\lambda} d \sin \theta \quad(N B \quad \phi=2 \beta)
$$

and

$$
A=2 a \cos \beta
$$

Thus the sum of the two waves can be obtained by the addition of two vectors of amplitude a and angular directions 0 and ϕ.
(ii) Each slit in diffraction grating produces a wave of amplitude a with phase 2β relative to previous slit wave. The vector diagram consists of a 'regular' polygon with sides of constant length a and with constant angles between adjacent sides.
Let O be the centre of circumscribing circle passing through the vertices of the polygon. Then radial lines such as OS have length R and bisect the internal angles of the polygon. Figure 1.2.

Figure 1.2

$$
\begin{aligned}
& \hat{O S} T=\hat{O T S}=\frac{1}{2}(180-\phi) \\
& \text { and } T \hat{O S}=\phi
\end{aligned}
$$

In the triangle TOS, for example

$$
\begin{gather*}
a=2 R \sin (\phi / 2)=2 R \sin \beta \text { as }(\phi=2 \beta) \\
\therefore R=\frac{a}{2 \sin \beta} \quad(1) \tag{1}
\end{gather*}
$$

As the polygon has N faces then:

$$
T \hat{O} Z=N(\hat{T O Z})=N \phi=2 N \beta
$$

Therefore in isosceles triangle TOZ, the amplitude of the resultant wave, TZ, is given by

$$
2 R \sin N \beta
$$

Hence form (1) this amplitude is

$$
\frac{a \sin N \beta}{\sin \beta}
$$

Resultant phase is

$$
\begin{aligned}
& =Z \hat{T} S \\
& =O \hat{T} S-O \hat{T} Z \\
& \left(90-\frac{\phi}{2}\right)-\frac{1}{2}(180-N \phi) \\
& -\frac{1}{2}(N-1) \phi \\
& =(N-1) \beta
\end{aligned}
$$

(iii)

Intensity $I=\frac{a^{2} \sin ^{2} N \beta}{\sin ^{2} \beta}$

(iv) For the principle maxima $\beta=\pi p \quad$ where $p=0 \pm 1 \pm 2 \ldots \ldots \ldots$

$$
I_{\max }=a^{2}\left(\frac{N \beta^{\prime}}{\beta^{\prime}}\right)=N^{2} a^{2} \quad \beta^{\prime}=0 \text { and } \beta=\pi p+\beta^{\prime}
$$

(v) Adjacent max. estimate I_{l} :

$$
\sin ^{2} N \beta=1, \beta=2 \pi p \mp \frac{3 \pi}{2 N} \text { i.e } \beta= \pm \frac{3 \pi}{2 N}
$$

$$
\left[\beta=\pi p \pm \frac{\pi}{2 N}\right] \text { does not give a maximum as can be observed from the graph. }
$$

$$
I_{1}=a^{2} \frac{1}{\frac{3 \pi^{2}}{2 n}}=\frac{a^{2} N^{2}}{23} \text { for } N \gg 1
$$

Adjacent zero intensity occurs for $\beta=\pi \rho \pm \frac{\pi}{N}$ i.e. $\delta= \pm \frac{\pi}{N}$
For phase differences much greater than $\delta, \quad \mathrm{I}=\mathrm{a}^{2}\left(\frac{\sin N \beta}{\sin \beta}\right)=a^{2}$.
(vi)

$$
\begin{aligned}
& \beta=n \pi \text { for a principle maximum } \\
& \text { i.e. } \frac{\pi}{\lambda} d \sin \theta=n \pi \quad n=0, \pm 1, \pm 2 \ldots \ldots \ldots .
\end{aligned}
$$

Differentiating w.r.t, λ
$d \cos \theta \Delta \theta=n \Delta \lambda$
$\Delta \theta=\frac{n \Delta \lambda}{d \cos \theta}$
Substituting $\lambda=589.0 \mathrm{~nm}, \lambda+\Delta \lambda=589.6 \mathrm{~nm} . \mathrm{n}=2$ and $d=1.2 \times 10^{-6} \mathrm{~m}$.
$\Delta \theta=\frac{n \Delta \lambda}{d \sqrt{1-\left(\frac{n \lambda}{d}\right)^{2}}}$ as $\sin \theta=\frac{n \lambda}{d}$ and $\cos \theta=\sqrt{1-\left(\frac{n \lambda}{d}\right)^{2}}$
$\Rightarrow \Delta \theta=5.2 \times 10^{-3} \mathrm{rads}$ or 0.30^{0}

