Q3

Three particles, each of mass m, are in equilibrium and joined by unstretched massless springs, each with Hooke's Law spring constant k. They are constrained to move in a circular path as indicated in Figure 3.1.

Figure 3.1

(i) If each mass is displaced from equilibrium by small displacements u_{1}, u_{2} and u_{3} respectively, write down the equation of motion for each mass.
(ii) Verify that the system has simple harmonic solutions of the form

$$
u_{n}=a_{n} \cos \omega t
$$

with accelerations, $\left(-\omega^{2} u_{n}\right)$ where $a_{n}(n=1,2,3)$ are constant amplitudes, and ω, the angular frequency, can have 3 possible values,

$$
\omega_{o} \sqrt{3}, \omega_{o} \sqrt{3} \text { and } 0 . \text { where } \omega_{o}^{2}=\frac{k}{m} \text {. }
$$

(iii) The system of alternate springs and masses is extended to N particles, each mass m is joined by springs to its neighbouring masses. Initially the springs are unstretched and in equilibrium. Write down the equation of motion of the nth mass ($n=1,2 \ldots N$) in terms of its displacement and those of the adjacent masses when the particles are displaced from equilibrium.

Show that

$$
u_{n}(t)=a_{s} \sin \left(\frac{2 n s \pi}{N}+\phi\right) \cos \omega_{s} t,
$$

are oscillatory solutions where $s=1,2, \ldots N, n=1,2, \ldots N$ and where ϕ is an arbitrary phase, providing the angular frequencies are given by

$$
\omega_{s}=2 \omega_{o} \sin \left(\frac{s \pi}{N}\right),
$$

where $a_{s}(s=1, \ldots \ldots . N)$ are constant amplitudes independent of n.

State the range of possible frequencies for a chain containing an infinite number of masses.
(iv) Determine the ratio

$$
u_{n} / u_{n+1}
$$

for large N, in the two cases:
(a) low frequency solutions
(b) $\omega=\omega_{\max }$, where $\omega_{\max }$ is the maximum frequency solution.

Sketch typical graphs indicating the displacements of the particles against particle number along the chain at time t for cases (a) and (b).
(v) If one of the masses is replaced by a mass $m^{\prime} \ll m$ estimate any major change one would expect to occur to the angular frequency distribution.

Describe qualitatively the form of the frequency spectrum one would predict for a diatomic chain with alternate masses m and m^{\prime} on the basis of the previous result.

Reminder

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& 2 \sin ^{2} A=1-\cos 2 A
\end{aligned}
$$

