2 Solutions

2.1 Theoretical competition

Problem 1

a) Let the electrical signals supplied to rods 1 and 2 be $E_1 = E_0 \cos \omega t$ and $E_2 = E_0 \cos(\omega t + \delta)$, respectively. The condition for a maximum signal in direction \mathcal{G}_A (Fig. 4) is:

$$\frac{2\pi a}{\lambda}\sin\theta_A - \delta = 2\pi N$$

and the condition for a minimum signal in direction θ_B :

$$\frac{2\pi a}{\lambda}\sin\theta_B - \delta = 2\pi N' + \pi \tag{2p.}$$

where N and N' are arbitrary integers. In addition, $\vartheta_A - \vartheta_B = \varphi$, where

Fig. 4

 φ is given. The problem can now be formulated as follows: Find the parameters a, ϑ_A , ϑ_B , δ , N, and N' satisfying the above equations such, that a is minimum.

We first eliminate δ by subtracting the second equation from the first one:

$$a\sin\theta_A - a\sin\theta_B = \lambda(N - N' - \frac{1}{2})$$
.

Using the sine addition theorem and the relation $\vartheta_B = \vartheta_A - \varphi$:

$$2a\cos(\theta_A - \frac{1}{2}\varphi)\sin\frac{1}{2}\varphi = \lambda(N - N' - \frac{1}{2})$$

or

$$a = \frac{\lambda(N - N' - \frac{1}{2})}{2\cos(\theta_A - \frac{1}{2}\varphi)\sin\frac{1}{2}\varphi}.$$

The minimum of a is obtained for the greatest possible value of the denominator, i. e.:

$$\cos(\theta_A - \frac{1}{2}\varphi) = 1$$
, $\theta_A = \frac{1}{2}\varphi$,

and the minimum value of the numerator, i. e.:

$$N-N'=1$$
.

The solution is therefore:

$$a = \frac{\lambda}{4\sin\frac{1}{2}\varphi}$$
, $\theta_A = \frac{1}{2}\varphi$, $\theta_B = -\frac{1}{2}\varphi$ and $\delta = \frac{1}{2}\pi - 2\pi N$. (6p.)

 $(N=0\ can\ be\ assumed\ throughout\ without\ loosing\ any\ physically\ relevant\ solution.)$

b) The wavelength $\lambda = c/v = 11.1$ m, and the angle between directions A and B, $\varphi = 157^{\circ} - 72^{\circ} = 85^{\circ}$. The minimum distance between the rods is a = 4.1 m, while the direction of the symmetry line of the rods is $72^{\circ} + 42.5^{\circ} = 114.5^{\circ}$ measured from the north. (2 p.)