Solution:

In the coordinate system of the figure, we have for the centre of mass coordinates of the two triangular parts of the water

$$
\left(x_{1}, y_{1}\right)=(L / 3, h / 2+\xi / 3) \quad\left(x_{2}, y_{2}\right)=(-L / 3, h / 2-\xi / 3) .
$$

For the entire water mass the centre of mass coordinates will then be

$$
\left(x_{\text {COM }}, y_{\text {COM }}\right)=\left(\frac{\xi L}{6 h}, \frac{\xi^{2}}{6 h}\right)
$$

Due to that the y component is quadratic in ξ will be much much smaller than the x component.
The velocities of the water mass are

$$
\left(v_{x}, v_{y}\right)=\left(\frac{\xi L}{6 h}, \frac{\xi \xi}{3 h}\right),
$$

and again the vertical component is much smaller the the horizontal one.
We now in our model neglect the vertical components. The total energy (kinetic + potential) will then be

$$
W=W_{K}+W_{P}=\frac{1}{2} M \frac{\xi^{2} L^{2}}{36 h^{2}}+M g \frac{\xi^{2}}{6 h^{2}}
$$

For a harmonic oscillator we have

$$
W=W_{K}+W_{P}=\frac{1}{2} m x^{2}+\frac{1}{2} m \omega^{2} x^{2}
$$

Identifying gives

$$
\omega=\sqrt{\frac{12 g h}{L}} \text { or } T_{\text {modd }}=\frac{\pi L}{\sqrt{3 h}} \text {. }
$$

Comparing with the experimental data we find $T_{\text {experiment }} \approx 1.1 \cdot T_{\text {modal }}$ our model gives a slight underestimation of the oscillation period.

Applying our corrected model on the Vättern data we have that the oscillation period of the seiching is about 3 hours.

Many other models are possible and give equivalent results.

