Optics - Problem III (7points)

Prisms

Two dispersive prisms having apex angles $\hat{A}_{1}=60^{\circ}$ and $\hat{A}_{2}=30^{\circ}$ are glued as in the figure ($\hat{C}=90^{\circ}$). The dependences of refraction indexes of the prisms on the wavelength are given by the relations

$$
\begin{aligned}
& n_{1}(\lambda)=a_{1}+\frac{b_{1}}{\lambda^{2}} ; \\
& n_{2}(\lambda)=a_{2}+\frac{b_{2}}{\lambda^{2}}
\end{aligned}
$$

were
$a_{1}=1,1, \quad b_{1}=1 \cdot 10^{5} \mathrm{~nm}^{2}, \quad a_{2}=1,3, \quad b_{2}=5 \cdot 10^{4} \mathrm{~nm}^{2}$.

a. Determine the wavelength λ_{0} of the incident radiation that pass through the prisms without refraction on $A C$ face at any incident angle; determine the corresponding refraction indexes of the prisms.
b. Draw the ray path in the system of prisms for three different radiations $\lambda_{\text {red }}, \lambda_{0}, \lambda_{\text {violet }}$ incident on the system at the same angle.
c. Determine the minimum deviation angle in the system for a ray having the wavelength λ_{0}.
d. Calculate the wavelength of the ray that penetrates and exits the system along directions parallel to DC.

Problem III - Solution

a. The ray with the wavelength λ_{0} pass trough the prisms system without refraction on $A C$ face at any angle of incidence if :
$n_{1}\left(\lambda_{0}\right)=n_{2}\left(\lambda_{0}\right)$
Because the dependence of refraction indexes of prisms on wavelength has the form :
$n_{1}(\lambda)=a_{1}+\frac{b_{1}}{\lambda^{2}}$
$n_{2}(\lambda)=a_{2}+\frac{b_{2}}{\lambda^{2}}$
The relation (3.1) becomes:
$a_{1}+\frac{b_{1}}{\lambda_{0}{ }^{2}}=a_{2}+\frac{b_{2}}{\lambda_{0}{ }^{2}}$
The wavelength λ_{0} has correspondingly the form:
$\lambda_{0}=\sqrt{\frac{b_{1}-b_{2}}{a_{2}-a_{1}}}$
Substituting the furnished numerical values
$\lambda_{0}=500 \mathrm{~nm}$

The corresponding common value of indexes of refraction of prisms for the radiation with the wavelength λ_{0} is:
$n_{1}\left(\lambda_{0}\right)=n_{2}\left(\lambda_{0}\right)=1,5$
The relations (3.6) and (3.7) represent the answers of question a.
b. For the rays with different wavelength ($\lambda_{\text {red }}, \lambda_{0}, \lambda_{\text {violet }}$) having the same incidence angle on first prism, the paths are illustrated in the figure 1.1.

Figure 3.1
The draw illustrated in the figure 1.1 represents the answer of question \mathbf{b}.
c. In the figure 1.2 is presented the path of ray with wavelength λ_{0} at minimum deviation (the angle between the direction of incidence of ray and the direction of emerging ray is minimal).

Figure 3.2
In this situation
$n_{1}\left(\lambda_{0}\right)=n_{2}\left(\lambda_{0}\right)=\frac{\sin \frac{\delta_{\text {min }}+A^{\prime}}{2}}{\sin \frac{A^{\prime}}{2}}$
where
$m\left(\hat{A}^{\prime}\right)=30^{\circ}$,
as in the figure 1.1
Substituting in (3.8) the values of refraction indexes the result is

$$
\begin{equation*}
\sin \frac{\delta_{\min }+A^{\prime}}{2}=\frac{3}{2} \cdot \sin \frac{A^{\prime}}{2} \tag{3.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{\min }=2 \arcsin \left(\frac{3}{2} \cdot \sin \frac{A^{\prime}}{2}\right)-\frac{A^{\prime}}{2} \tag{3.9}
\end{equation*}
$$

Numerically
$\delta_{\text {min }} \cong 30,7^{\circ}$
The relation (3.11) represents the answer of question \mathbf{c}.
d. Using the figure 1.3 the refraction law on the $A D$ face is
$\sin i_{1}=n_{1} \cdot \sin r_{1}$
The refraction law on the $A C$ face is
$n_{1} \cdot \sin r_{1}{ }^{\prime}=n_{2} \cdot \sin r_{2}$

Figure 3.3
As it can be seen in the figure 1.3
$r_{2}=A_{2}$
and
$i_{1}=30^{\circ}$
Also,
$r_{1}+r_{1}{ }^{\prime}=A_{1}$
Substituting (3.16) and (3.14) in (3.13) it results
$n_{1} \cdot \sin \left(A_{1}-r_{1}\right)=n_{2} \cdot \sin A_{2}$
or
$n_{1} \cdot\left(\sin A_{1} \cdot \cos r_{1}-\sin r_{1} \cdot \cos A_{1}\right)=n_{2} \cdot \sin A_{2}$
Because of (3.12) and (3.15) it results that
$\sin r_{1}=\frac{1}{2 n_{1}}$
and
$\cos r_{1}=\frac{1}{2 n_{1}} \sqrt{4 n_{1}{ }^{2}-1}$
Putting together the last three relations it results

$$
\begin{equation*}
\sqrt{4 n_{1}^{2}-1}=\frac{2 n_{2} \cdot \sin A_{2}+\cos A_{1}}{\sin A_{1}} \tag{3.20}
\end{equation*}
$$

Because
$\hat{A}_{1}=60^{\circ}$
and
$\hat{A}_{2}=30^{\circ}$
relation (3.21) can be written as

$$
\begin{equation*}
\sqrt{4 n_{1}{ }^{2}-1}=\frac{2 n_{2}+1}{\sqrt{3}} \tag{3.21}
\end{equation*}
$$

or

$$
\begin{equation*}
3 \cdot n_{1}^{2}=1+n_{2}+n_{2}^{2} \tag{3.22}
\end{equation*}
$$

Considering the relations (3.1), (3.2) and (3.23) and operating all calculus it results:

$$
\begin{equation*}
\lambda^{4} \cdot\left(3 a_{1}^{2}-a_{2}^{2}-a_{2}-1\right)+\left(6 a_{1} b_{1}-b_{2}-2 a_{2} b_{2}\right) \cdot \lambda^{2}+3 b_{1}^{2}-b_{2}^{2}=0 \tag{3.23}
\end{equation*}
$$

Solving the equation (3.24) one determine the wavelength λ of the ray that enter the prisms system having the direction parallel with $D C$ and emerges the prism system having the direction again parallel with $D C$. That is

$$
\begin{equation*}
\lambda=1194 \mathrm{~nm} \tag{3.24}
\end{equation*}
$$

or
$\lambda \cong 1,2 \mu \mathrm{~m}$
The relation (3.26) represents the answer of question \mathbf{d}.

Professor Defia $\mathcal{D A V I D E S C V , ~ \mathcal { N a t i o n a l ~ D e p a r t m e n t ~ o f ~ E v a l u a t i o n ~ a n d ~ E x a m i n a t i o n - M i n i s t r y ~ o f ~ E d u c a t i o n ~ a n d ~ }}$ Research- Bucharest, Romania
Professor Adrian S.DAFISNEI,PhD, Faculty of Physics - University of Bucharest, Romania

