

Electricity – Problem II (8 points)

Different kind of oscillation

Let's consider the electric circuit in the figure, for which $L_1 = 10 \ mH$, $L_2 = 20 \ mH$, $C_1 = 10 \ nF$, $C_2 = 5 \ nF$ and $R = 100 \ k\Omega$. The switch *K* being closed the circuit is coupled with a source of alternating current. The current furnished by the source has constant intensity while the frequency of the current may be varied.

a. Find the ratio of frequency f_m for which the active power in circuit has the maximum value P_m and the frequency difference $\Delta f = f_+ - f_-$ of the frequencies f_+ and f_- for which the active power in the circuit is half of the maximum power P_m .

The switch *K* is now open. In the moment t_0 immediately after the switch is open the intensities of the currents in the coils L_1 and $i_{01} = 0,1$ A and $i_{02} = 0,2$ A L_1 (the currents flow as in the figure); at the same moment, the potential difference on the capacitor with capacity C_1 is $u_0 = 40V$:

- **b.** Calculate the frequency of electromagnetic oscillation in $L_1C_1C_2L_2$ circuit;
- **c.** Determine the intensity of the electric current in the *AB* conductor;
- **d.** Calculate the amplitude of the oscillation of the intensity of electric current in the $\operatorname{coil} L_1$.

Neglect the mutual induction of the coils, and the electric resistance of the conductors. Neglect the fast transition phenomena occurring when the switch is closed or opened.

