Electricity - Pro6lem II (8 points)

Different kind of oscillation

Let's consider the electric circuit in the figure, for which $L_{1}=10 \mathrm{mH}$, $L_{2}=20 \mathrm{mH}, \mathrm{C}_{1}=10 \mathrm{nF}, \mathrm{C}_{2}=5 \mathrm{nF}$ and $R=100 \mathrm{k} \Omega$. The switch K being closed the circuit is coupled with a source of alternating current. The current furnished by the source has constant intensity while the frequency of the current may be varied.
a. Find the ratio of frequency f_{m} for which the active power in circuit has the maximum value P_{m} and the frequency difference $\Delta f=f_{+}-f_{-}$of the frequencies f_{+}and f_{-}for which the active power in the circuit is half of the maximum power P_{m}.

The switch K is now open. In the moment t_{0} immediately after the switch
 is open the intensities of the currents in the coils L_{1} and $i_{01}=0,1 A$ and $i_{02}=0,2 \mathrm{~A} \quad L_{1}$ (the currents flow as in the figure); at the same moment, the potential difference on the capacitor with capacity C_{1} is $u_{0}=40 \mathrm{~V}$:
b. Calculate the frequency of electromagnetic oscillation in $L_{1} C_{1} C_{2} L_{2}$ circuit;
c. Determine the intensity of the electric current in the $A B$ conductor;
d. Calculate the amplitude of the oscillation of the intensity of electric current in the coil L_{1}.

Neglect the mutual induction of the coils, and the electric resistance of the conductors. Neglect the fast transition phenomena occurring when the switch is closed or opened.

$u_{A C}\left(t_{0}\right)=u_{0}$

