Experimental Problems

Problem 4: Lens experiment

The apparatus consists of a symmetric biconvex lens, a plane mirror, water, a meter stick, an optical object (pencil), a supporting base and a right angle clamp. Only these parts may be used in the experiment.
a) Determine the focal length of the lens with a maximum error of $\pm 1 \%$.
b) Determine the index of refraction of the glass from which the lens is made.

The index of refraction of water is $n_{w}=1.33$. The focal length of a thin lens is given by

$$
\frac{1}{\mathrm{f}}=(\mathrm{n}-1) \cdot\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right),
$$

where n is the index of refraction of the lens material and r_{1} and r_{2} are the curvature radii of the refracting surfaces. For a symmetric biconvex lens we have $r_{1}=-r_{2}=r$, for a symmetric biconcave lens $r_{1}=-r_{2}=-r$.

