g) The capacitive resistance of a capacitor of $4.7 \mu \mathrm{~F}$ is

$$
\frac{1}{\omega \cdot \mathrm{C}}=\left(100 \cdot \pi \cdot 4.7 \cdot 10^{-6}\right)^{-1} \Omega=677.3 \Omega .
$$

The two reactances subtract and there remains a reactance of $334.7 \Omega$ acting as a capacitor.

The total resistance of the arrangement is now

$$
Z^{\prime}=\sqrt{(334.7)^{2}+(166.3)^{2}} \Omega=373.7 \Omega,
$$

which is very close to the total resistance without capacitor, if you assume the capacitor to be loss-free (cf. a) ). Thus the lamp has the same operating qualities, ignites the same way, and a difference is found only in the impedance angle $\varphi$ ', which is opposite to the angle $\varphi$ calculated in b):

$$
\begin{aligned}
& \tan \varphi^{\prime}=\frac{\omega \cdot \mathrm{L}-(\omega \cdot \mathrm{C})^{-1}}{\mathrm{R}}=-\frac{334.7}{166.3}=-2.01 \\
& \varphi^{\prime}=-63.6^{\circ} .
\end{aligned}
$$

Such additional capacitors are used for compensation of reactive currents in buildings with a high number of fluorescent lamps, frequently they are prescribed by the electricity supply companies. That is, a high portion of reactive current is unwelcome, because the power generators have to be layed out much bigger than would be really necessary and transport losses also have to be added which are not payed for by the customer, if pure active current meters are used.
h) The uncoated part of the demonstrator lamp reveals the line spectrum of mercury, the coated part shows the same line spectrum over a continuous background. The continuous spectrum results from the ultraviolet part of the mercury light, which is absorbed by the fluorescence and re-emitted with smaller frequency (energy loss of the photons) or larger wavelength respectively.

## Problem 2: Oscillating coat hanger

A (suitably made) wire coat hanger can perform small amplitude oscillations in the plane of the figure around the equilibrium positions shown. In positions a) and b) the long side is
horizontal. The other two sides have equal length. The period of oscillation is the same in all cases.

What is the location of the center of mass, and how long is the period?
a)

b)

c)


The figure does not contain any information beyond the dimensions given. Nothing is known, e.g., concerning the detailed distribution of mass.

## Solution of problem 2

First method:
The motions of a rigid body in a plane correspond to the motion of two equal point masses connected by a rigid massless rod. The moment of inertia then determines their distance. Because of the equilibrium position a) the center of mass is on the perpendicular bipartition of the long side of the coat hanger. If one imagines the equivalent masses and the supporting point P being arranged in a straight line in each case, only two positions of $P$ yield the same period of oscillation (see sketch). One can understand this by
 considering the limiting cases: 1 . both supporting points in the upper mass and 2 . one point in the center of mass and the other infinitely high above. Between these extremes the period of oscillation grows continuously. The supporting point placed in the corner of the long side c ) has the largest distance from the center of mass, and therefore this point lies outside the two point masses. The two other supporting points a), b) then have to be placed symmetrically to the center of mass between the two point masses, i.e., the center of mass bisects the perpendicular bipartition. One knows of the reversible pendulum that for every supporting point of the physical pendulum it generally has a second supporting point of the pendulum rotated by $180^{\circ}$, with the same period of oscillation but at a different distance from the center of mass. The

