Solution of the Theoretical Problem 2

1) The voltage U_{0} of the lamp of resistance R_{0} is adjusted using the rheostat of resistance R. Using the Kirchhoff laws one obtains:

$$
\begin{equation*}
I=\frac{U_{0}}{R}+\frac{U_{0}}{R-R_{x}}, \tag{1}
\end{equation*}
$$

where $R-R_{x}$ is the resistance of the part of the rheostat, parallel connected to the lamp, R_{x} is the resistance of the rest part,

$$
\begin{equation*}
U_{0}=E-I R_{x} \tag{2}
\end{equation*}
$$

The efficiency η of such a circuit is

$$
\begin{equation*}
\eta=\frac{P_{\text {lamp }}}{P_{\text {accum. }}}=\frac{U_{0}^{2} / r}{I E}=\frac{U_{0}^{2}}{R I E} . \tag{3}
\end{equation*}
$$

From eq. (3) it is seen that the maximal current, flowing in the rheostat, is determined by the minimal value of the efficiency:

$$
\begin{equation*}
I_{\max }=\frac{U_{0}^{2}}{R E \eta_{\min }}=\frac{U_{0}^{2}}{R E \eta_{0}} \tag{4}
\end{equation*}
$$

The dependence of the resistance of the rheostat R on the efficiency η can determined replacing the value for the current I, obtained by the eq. (3), $I=\frac{U_{0}^{2}}{R E \eta}$, in the eqs. (1) and (2):

$$
\begin{align*}
& \frac{U_{0}}{R E \eta}=\frac{1}{R_{0}}+\frac{1}{R-R_{x}} \tag{5}\\
& R_{x}=\left(E-U_{0}\right) \frac{R E \eta}{U_{0}^{2}} \tag{6}
\end{align*}
$$

Then

$$
\begin{equation*}
R=R_{0} \eta \frac{E^{2}}{U_{0}^{2}} \frac{1+\eta\left(1-\frac{E}{U_{0}}\right)}{1-\frac{E}{U_{0}} \eta} \tag{7}
\end{equation*}
$$

To answer the questions, the dependence $R(\eta)$ must be investigated. By this reason we find the first derivative R_{η}^{\prime} :

$$
\begin{gathered}
R_{\eta}^{\prime} \propto\left(\frac{\eta+\eta^{2}\left(1-\frac{E}{U_{0}}\right)}{1-\frac{E}{U_{0}} \eta}\right)^{\prime} \propto \\
\propto 1+2 \eta\left(1-\frac{E}{U_{0}}\right)\left(1-\frac{E}{U_{0}} \eta\right)+\left[\eta+\eta^{2}\left(1-\frac{E}{U_{0}}\right)\right] \frac{E}{U_{0}}=\eta\left(2-\frac{E}{U_{0}} \eta\right)\left(1-\frac{E}{U_{0}}\right)+1 .
\end{gathered}
$$

$\eta<1$, therefore the above obtained derivative is positive and the function $R(\eta)$ is increasing. It means that the efficiency will be minimal when the rheostat resistance is minimal. Then
$R \geq R_{\text {min }}=R_{0} \eta_{0} \frac{E^{2}}{U_{0}^{2}} \frac{1+\eta_{0}\left(1-\frac{E}{U_{0}}\right)}{1-\frac{E}{U_{0}} \eta_{0}} \approx 8.53 \Omega$.
The maximal current $I_{\max }$ can be calculated using eq. (4). The result is: $I_{\max } \approx 660 \mathrm{~mA}$.
2) As the function $R(\eta)$ is increasing one, $\eta \rightarrow \eta_{\max }$, when $R \rightarrow \infty$. In this case the total current I will be minimal and equal to $\frac{U_{0}}{R}$. Therefore the maximal efficiency is

$$
\eta_{\max }=\frac{U_{0}}{E}=0.75
$$

This case can be realized connecting the rheostat in the circuit using only two of its three plugs. The used part of the rheostat is R_{1} :

$$
R_{1}=\frac{E-U_{0}}{I_{0}}=\frac{E-U_{0}}{U_{0}} R_{0} \approx 0.67 \Omega .
$$

