10th International Physics Olympiad 1977, Hradec Králové, Czechoslovakia

Problem 1. The compression ratio of a four-stroke internal combustion engine is $\varepsilon = 9.5$. The engine draws in air and gaseous fuel at a temperature 27°C at a pressure 1 atm = 100 kPa. Compression follows an adiabatic process from point 1 to point 2, see Fig. 1. The pressure in the cylinder is doubled during the mixture ignition (2–3). The hot exhaust gas expands adiabatically to the volume V_2 pushing the piston downwards (3–4). Then the exhaust valve opens and the pressure gets back to the initial value of 1 atm. All processes in the cylinder are supposed to be ideal. The Poisson constant (i.e. the ratio of specific heats C_p/C_V) for the mixture and exhaust gas is $\kappa = 1.40$. (The compression ratio is the ratio of the volume of the cylinder when the piston is at the bottom to the volume when the piston is at the top.)

Figure 1:

- a) Which processes run between the points 0-1, 2-3, 4-1, 1-0?
- b) Determine the pressure and the temperature in the states 1, 2, 3 and 4.
- c) Find the thermal efficiency of the cycle.
- d) Discuss obtained results. Are they realistic?

Solution: a) The description of the processes between particular points is the following:

.0110 11 1110		
0-1 :	intake stroke	isobaric and isothermal process
1-2:	compression of the mixture	adiabatic process
2-3:	mixture ignition	isochoric process
3-4:	expansion of the exhaust gas	adiabatic process
4-1:	exhaust	isochoric process
1-0:	exhaust	isobaric process

Let us denote the initial volume of the cylinder before induction at the point 0 by V_1 , after induction at the point 1 by V_2 and the temperatures at the particular points by T_0 , T_1 , T_2 , T_3 and T_4 .

- b) The equations for particular processes are as follows.
- 0–1: The fuel-air mixture is drawn into the cylinder at the temperature of $T_0 = T_1 = 300$ K and a pressure of $p_0 = p_1 = 0.10$ MPa.
- 1-2: Since the compression is very fast, one can suppose the process to be adiabatic. Hence:

$$p_1 V_2^{\kappa} = p_2 V_1^{\kappa}$$
 and $\frac{p_1 V_2}{T_1} = \frac{p_2 V_1}{T_2}$.

From the first equation one obtains

$$p_2 = p_1 \left(\frac{V_2}{V_1}\right)^{\kappa} = p_1 \varepsilon^{\kappa}$$

and by the dividing of both equations we arrive after a straightforward calculation at

$$T_1 V_2^{\kappa - 1} = T_2 V_1^{\kappa - 1}, \quad T_2 = T_1 \left(\frac{V_2}{V_1}\right)^{\kappa - 1} = T_1 \varepsilon^{\kappa - 1}.$$

For given values $\kappa = 1.40$, $\varepsilon = 9.5$, $p_1 = 0.10$ MPa, $T_1 = 300$ K we have $p_2 = 2.34$ MPa and $T_2 = 738$ K ($t_2 = 465$ °C).