Solution

The volume of 4 g helium at $0^{\circ} \mathrm{C}$ temperature and a pressure of 100 kPa is $22.4 \mathrm{dm}^{3}$ (molar volume). It follows that initially the pressure on the left hand side is 600 kPa , on the right hand side 100 kPa . Therefore the valve is closed.

An adiabatic compression happens until the pressure in the right side reaches 600 kPa ($\kappa=5 / 3$).

$$
100 \cdot 11.2^{5 / 3}=600 \cdot V^{5 / 3},
$$

hence the volume on the right side (when the valve opens):

$$
V=3.82 \mathrm{dm}^{3} .
$$

From the ideal gas equation the temperature is on the right side at this point

$$
T_{1}=\frac{p V}{n R}=552 \mathrm{~K} .
$$

During this phase the whole work performed increases the internal energy of the gas:

$$
W_{1}=(3.15 \mathrm{~J} / \mathrm{gK}) \cdot(2 \mathrm{~g}) \cdot(552 \mathrm{~K}-273 \mathrm{~K})=1760 \mathrm{~J} .
$$

Next the valve opens, the piston is arrested. The temperature after the mixing has been completed:

$$
T_{2}=\frac{12 \cdot 273+2 \cdot 552}{14}=313 \mathrm{~K} .
$$

During this phase there is no change in the energy, no work done on the piston.
An adiabatic compression follows from $11.2+3.82=15.02 \mathrm{dm}^{3}$ to $11.2 \mathrm{dm}^{3}$:

$$
313 \cdot 15.02^{2 / 3}=T_{3} \cdot 11.2^{2 / 3},
$$

hence

$$
T_{3}=381 \mathrm{~K} .
$$

The whole work done increases the energy of the gas:

$$
W_{3}=(3.15 \mathrm{~J} / \mathrm{gK}) \cdot(14 \mathrm{~g}) \cdot(381 \mathrm{~K}-313 \mathrm{~K})=3000 \mathrm{~J} .
$$

The total work done:

$$
W_{\text {total }}=W_{1}+W_{3}=4760 \mathrm{~J} .
$$

The work done by the outside atmospheric pressure should be subtracted:

$$
W_{\mathrm{atm}}=100 \mathrm{kPa} \cdot 11.2 \mathrm{dm}^{3}=1120 \mathrm{~J} .
$$

The work done on the piston by us:

$$
W=W_{\text {total }}-W_{\text {atm }}=\mathbf{3 6 4 0} \mathbf{~ J .}
$$

