Solution problem 4

a) From the Fermat principle it results that the time the light arrives from P_{1} to P_{2} is not dependent of the way, in gauss approximation (P_{1} and P_{2} are conjugated points).

Fig. 4.2
T_{1} is the time the light roams the optical way $P_{1} V_{1} O V_{2} P_{2}$ (fig. 4.2):
$T_{1}=\frac{P_{1} M}{v_{1}}+\frac{P_{2} M}{v_{2}}$, where $P_{1} M=\sqrt{P_{1} O^{2}+M O^{2}} \approx P_{1} O+\frac{h^{2}}{2 P_{1} O}$, and $P_{2} M \approx P_{2} O+\frac{h^{2}}{2 P_{2} O}$ because $h=O M$ is much more smaller than $P_{1} O$ or $P_{2} O$.

$$
\begin{gather*}
T_{1}=\frac{P_{1} O}{v_{1}}+\frac{P_{2} O}{v_{2}}+\frac{h^{2}}{2} \cdot\left(\frac{1}{v_{1} P_{1} O}+\frac{1}{v_{2} P_{2} O}\right) ; T_{2}=\frac{P_{1} V_{1}}{v_{1}}+\frac{V_{2} P_{2}}{v_{2}}+\frac{V_{1} V_{2}}{v} \tag{1}\\
V_{1} V_{2} \cong \frac{h^{2}}{2} \cdot\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
\end{gather*}
$$

From condition $T_{1}=T_{2}$, it results:

$$
\begin{equation*}
\frac{1}{v_{1} P_{1} O}+\frac{1}{v_{2} P_{2} O}=\frac{1}{v}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{1}{v_{1} R_{1}}-\frac{1}{v_{2} R_{2}} \tag{3}
\end{equation*}
$$

Taking in account the relation $v=\frac{c}{n}$, and using $P_{1} O=s_{1}, O P_{2}=s_{2}$, the relation (3) can be written:

$$
\begin{equation*}
\frac{n_{1}}{s_{1}}+\frac{n_{2}}{s_{2}}=n_{o}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{1}{v_{1} R_{1}}-\frac{1}{v_{2} R_{2}} \tag{4}
\end{equation*}
$$

If the point P_{1} is at infinite, s_{2} becomes the focal distance; the same for P_{2}.

$$
\begin{equation*}
\frac{1}{f_{2}}=\frac{1}{n_{2}} \cdot\left(\frac{n_{o}-n_{1}}{R_{1}}+\frac{n_{o}-n_{2}}{R_{2}}\right) ; \quad \frac{1}{f_{1}}=\frac{1}{n_{1}} \cdot\left(\frac{n_{o}-n_{1}}{R_{1}}+\frac{n_{o}-n_{2}}{R_{2}}\right) \tag{5}
\end{equation*}
$$

From the equations (30 and (4) it results:

$$
\begin{equation*}
\frac{f_{1}}{s_{1}}+\frac{f_{2}}{s_{2}}=1 \tag{6}
\end{equation*}
$$

The lens is plane-convex (fig. 4.3) and its focal distances are:

Fig. 4.3

$$
\begin{equation*}
f_{1}=\frac{n_{1} R}{n_{o}-n_{1}}=\frac{R}{n_{o}-1} \quad ; \quad f_{2}=\frac{n_{2} R}{n_{o}-n_{1}}=\frac{n_{2} R}{n_{0}-1} \tag{7}
\end{equation*}
$$

b) In the case of Billet lenses, S_{1} and S_{2} are the real images of the object S and can be considered like coherent light sources (fig. 4.4).

Fig. 4.4
$O_{1} O_{2}=\Delta$ is much more smaller than $\mathrm{r}:$

$$
O M=\Delta+r \approx r, S O \approx S O_{1} \approx S O_{2}=p_{1}, S_{1} O_{1}=S_{2} O_{2} \approx S^{\prime} O=p_{2}, S_{1} S_{2}=\Delta \cdot\left(1+\frac{p_{1}}{p_{2}}\right)
$$

We calculate the width of the interference field $R R^{\prime}$ (fig. 4.4).

$$
R R^{\prime}=2 \cdot R A=2 \cdot S^{\prime} A \cdot \operatorname{tg} \frac{\varphi}{2}, S^{\prime} A \cong d-p_{2}, \operatorname{tg} \frac{\varphi}{2}=\frac{r}{p_{2}}, \quad R R^{\prime}=2\left(d-p_{2}\right) \cdot \frac{r}{p_{2}}
$$

Maximum interference condition is:

$$
S_{2} N=k \cdot \lambda
$$

The fringe of k order is located at a distance x_{k} from A:

$$
\begin{equation*}
x_{k}=k \cdot \frac{\lambda\left(d-p_{2}\right)}{\Delta\left(1+\frac{p_{2}}{p_{1}}\right)} \tag{8}
\end{equation*}
$$

The expression of the inter-fringes distance is:

$$
\begin{equation*}
i=\frac{\lambda\left(d-p_{2}\right)}{\Delta\left(1+\frac{p}{p_{1}}\right)} \tag{9}
\end{equation*}
$$

The number of observed fringes on the screen is:

$$
\begin{equation*}
N=\frac{R R^{\prime}}{i}=2 r \Delta \cdot \frac{1+\frac{p_{2}}{p_{1}}}{\lambda p_{2}} \tag{10}
\end{equation*}
$$

p_{2} can be expressed from the lenses' formula:

$$
p_{2}=\frac{p_{1} f}{p_{1}-f}
$$

