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Solution Problem 1 
 
 The inertia moments of the three cylinders are: 
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Because the three cylinders have  the same mass : 
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it results: 
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The inertia moments can be written:  
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In the expression of the inertia momentum  3I  the sum of the two factors is constant: 
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independent of n, so that their products are maximum when these factors are equal:  
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is les than 1. It results: 
 

I1 > I2 > I3                                (5) 
For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations: 
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where ε is the angular acceleration. If the cylinder doesn’t slide we have the condition: 
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Solving the equation system (6-8) we find: 
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The condition of non-sliding is: 
 

Ff < μN = μmgsinα 
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In the case of the cylinders from this problem, the condition necessary so that none of them 
slides is obtained for maximum I: 
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The accelerations of the cylinders are: 
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The relation between accelerations: 
 

a1 < a2 < a3                           (13) 
 
In the case than all the three cylinders slide: 
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and from (7) results: 

Fig. 1.1 
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for the cylinders of the problem: 
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ε1 < ε2 <  ε3                        (16) 

 
In the case that one of the cylinders is sliding: 
 

maFmg f sin ,    cosmgF f  ,    (17) 

  cossin  ga                                 (18) 
 

Let F


be the total force acting on the liquid mass ml inside the cylinder (fig.1.2), we can write: 
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where   is the friction angle   tg . 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2 


