Problem 4 (Optics)

A thin lens plane-convex with the diameter 2 r , the curvature radius R and the refractive index n_{0} is positioned so that on its left side is air $\left(n_{1}=1\right)$, and on its right side there is a transparent medium with the refractive index $n_{2} \neq 1$. The convex face of the lens is directed towards air. In the air, at the distance s_{1} from the lens, measured on the principal optic ax, there is a punctual source of monochromatic light.
a) Demonstrate, using Gauss approximation, that between the position of the image, given by the distance s_{2} from the lens, and the position of the light source, exists the relation:
$\frac{f_{1}}{s_{1}}+\frac{f_{2}}{s_{2}}=1$
where f_{1} and f_{2} are the focal distances of the lens, in air, respectively in the medium with the refractive index n_{2}.
Observation: All the refractive indexes are absolute indexes.
b) The lens is cut perpendicular on its plane face in two equal parts. These parts are moved away at a distance $\delta \ll \mathrm{r}$ (Billet lens). On the symmetry axis of the system obtained is led a punctual source of light at the distance $s_{1}\left(s_{1}>f_{1}\right)$ (fig. 4.1). On the right side of the lens there is a screen E at the distance d. The screen is parallel with the plane face of the lens. On this screen there are N interference fringes, if on the right side of the lens is air.
Determine N function of the wave length.

Fig. 4.1

