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Theoretical problems 

Question 1. 
 The blocks slide relative to the prism with accelerations a1 and a2, which are 
parallel to its sides and have the same magnitude a (see Fig. 1.1). The blocks move 
relative to the earth with accelerations: 
(1.1) w1 = a1 + a0; 
(1.2)   w2 = a2 + a0. 
Now we project w1 and w2 along the x- and y-axes: 
(1.3)   011 cos aaw x  ; 

(1.4)   11 sin aw y ; 

(1.5)   022 cos aaw x  ; 

(1.6)   22 sin aw y . 

                                                                                                        Fig. 1.1 
 
The equations of motion for the blocks and for the prism have the following vector 
forms (see Fig. 1.2): 
(1.7)   11111 TRgw  mm ; 

(1.8)   22222 TRgw  mm ; 

(1.9)   21210 TTRRRga  MM . 

 
 
 
 
 
 
 
 
 
                                                            Fig. 1.2 
 
The forces of tension T1 and T2 at the ends of the thread are of the same magnitude T 
since the masses of the thread and that of the pulley are negligible. Note that in equation 
(1.9) we account for the net force –(T1 + T2), which the bended thread exerts on the 
prism through the pulley. The equations of motion result in a system of six scalar 
equations when projected along x and y: 
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(1.10)   1110111 sincoscos  RTamam ; 

(1.11)   gmRTam 111111 cossinsin  ; 

(1.12)   2220222 sincoscos  RTamam ; 

(1.13)   gmRTam 222222 sinsinsin  ; 

(1.14)   2122110 coscossinsin  TTRRMa ; 

(1.15)   MgRRR  2211 coscos0 . 
By adding up equations (1.10), (1.12), and (1.14) all forces internal to the system cancel 
each other. In this way we obtain the required relation between accelerations a and a0: 
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The straightforward elimination of the unknown forces gives the final answer for a0: 
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It follows from equation (1.17) that the prism will be in equilibrium (a0 = 0) if: 
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