Solution

The devices given to the students allowed using several methods. The students used the following three methods:

1. Comparison of velocity of warming up water and petroleum;
2. Comparison of cooling down water and petroleum;
3. Traditional heat balance.

As no weights were given, the students had to use the sand to find portions of petroleum and water with masses equal to the mass of calorimeter.

First method: comparison of velocity of warming up
If the heater is inside water then both water and calorimeter are warming up. The heat taken by water and calorimeter is:

$$
Q_{1}=m_{w} c_{w} \Delta t_{1}+m_{c} c_{c} \Delta t_{1},
$$

where: m_{w} denotes mass of water, m_{c} - mass of calorimeter, c_{w} - specific heat of water, c_{c} specific heat of calorimeter, Δt_{1} - change of temperature of the system water + calorimeter.

On the other hand, the heat provided by the heater is equal:

$$
Q_{2}=A \frac{U^{2}}{R} \tau_{1},
$$

where: A - denotes the thermal equivalent of work, U - voltage, R - resistance of the heater, τ_{l} - time of work of the heater in the water.

Of course,

$$
Q_{1}=Q_{2} .
$$

Thus

$$
A \frac{U^{2}}{R} \tau_{1}=m_{w} c_{w} \Delta t_{1}+m_{c} c_{c} \Delta t_{1} .
$$

For petroleum in the calorimeter we get a similar formula:

$$
A \frac{U^{2}}{R} \tau_{2}=m_{p} c_{p} \Delta t_{2}+m_{c} c_{c} \Delta t_{2} .
$$

where: m_{p} denotes mass of petroleum, c_{p} - specific heat of petroleum, Δt_{2} - change of temperature of the system water + petroleum, $\tau_{2}-$ time of work of the heater in the petroleum.

By dividing the last equations we get

$$
\frac{\tau_{1}}{\tau_{2}}=\frac{m_{w} c_{w} \Delta t_{1}+m_{c} c_{c} \Delta t}{m_{p} c_{p} \Delta t_{2}+m_{c} c_{c} \Delta t_{2}} .
$$

It is convenient to perform the experiment by taking masses of water and petroleum equal to the mass of the calorimeter (for that we use the balance and the sand). For

$$
m_{w}=m_{p}=m_{c}
$$

the last formula can be written in a very simple form:

$$
\frac{\tau_{1}}{\tau_{2}}=\frac{c_{w} \Delta t_{1}+c_{c} \Delta t_{1}}{c_{p} \Delta t_{2}+c_{c} \Delta t_{2}} .
$$

Thus

$$
c_{c}=\frac{\Delta t_{1}}{\tau_{1}} \frac{\tau_{2}}{\Delta t_{2}} c_{w}-\left(1-\frac{\Delta t_{1}}{\tau_{1}} \frac{\tau_{2}}{\Delta t_{2}}\right) c_{c}
$$

or

$$
c_{c}=\frac{k_{1}}{k_{2}} c_{w}-\left(1-\frac{k_{1}}{k_{2}}\right) c_{c},
$$

where

$$
k_{1}=\frac{\Delta t_{1}}{\tau_{1}} \quad \text { and } \quad k_{2}=\frac{\Delta t_{2}}{\tau_{2}}
$$

denote "velocities of heating" water and petroleum, respectively. These quantities can be determined experimentally by drawing graphs representing dependence Δt_{1} and Δt_{2} on time (τ). The experiment shows that these dependences are linear. Thus, it is enough to take slopes of appropriate straight lines. The experimental setup given to the students allowed measurements of the specific heat of petroleum, equal to $0.53 \mathrm{cal} /\left(\mathrm{g}^{\circ} \cdot \mathrm{C}\right)$, with accuracy about 1%.

Some students used certain mutations of this method by performing measurements at $\Delta t_{1}=\Delta t_{2}$ or at $\tau_{1}=\tau_{2}$. Then, of course, the error of the final result is greater (it is additionally affected by accuracy of establishing the conditions $\Delta t_{1}=\Delta t_{2}$ or at $\tau_{1}=\tau_{2}$).

Second method: comparison of velocity of cooling down
Some students initially heated the liquids in the calorimeter and later observed their cooling down. This method is based on the Newton's law of cooling. It says that the heat Q transferred during cooling in time τ is given by the formula:

$$
Q=h(t-\vartheta) s \tau
$$

where: t denotes the temperature of the body, ϑ - the temperature of surrounding, $s-$ area of the body, and h - certain coefficient characterizing properties of the surface. This formula is
correct for small differences of temperatures $t-\vartheta$ only (small compared to t and ϑ in the absolute scale).

This method, like the previous one, can be applied in different versions. We will consider only one of them.

Consider the situation when cooling of water and petroleum is observed in the same calorimeter (containing initially water and later petroleum). The heat lost by the system water + calorimeter is

$$
\Delta Q_{1}=\left(m_{w} c_{w}+m_{c} c_{c}\right) \Delta t
$$

where Δt denotes a change of the temperature of the system during certain period τ_{1}. For the system petroleum + calorimeter, under assumption that the change in the temperature Δt is the same, we have

$$
\Delta Q_{2}=\left(m_{p} c_{p}+m_{c} c_{c}\right) \Delta t
$$

Of course, the time corresponding to Δt in the second case will be different. Let it be τ_{2}. From the Newton's law we get

$$
\frac{\Delta Q_{1}}{\Delta Q_{2}}=\frac{\tau_{1}}{\tau_{2}}
$$

Thus

$$
\frac{\tau_{1}}{\tau_{2}}=\frac{m_{w} c_{w}+m_{c} c_{c}}{m_{p} c_{p}+m_{c} c_{c}} .
$$

If we conduct the experiment at

$$
m_{w}=m_{p}=m_{c},
$$

then we get

$$
c_{p}=\frac{T_{2}}{T_{1}} c_{w}-\left(1-\frac{T_{2}}{T_{1}}\right) c_{c} .
$$

As cooling is rather a very slow process, this method gives the result with definitely greater error.

Third method: heat balance

This method is rather typical. The students heated the water in the calorimeter to certain temperature t_{1} and added the petroleum with the temperature t_{2}. After reaching the thermal equilibrium the final temperature was t. From the thermal balance (neglecting the heat losses) we have

$$
\left(m_{w} c_{w}+m_{c} c_{c}\right)\left(t_{1}-t\right)=m_{p} c_{p}\left(t-t_{2}\right) .
$$

If, like previously, the experiment is conducted at

$$
m_{w}=m_{p}=m_{c},
$$

then

$$
c_{p}=\left(c_{w}+c_{c}\right) \frac{t_{1}-t}{t-t_{2}}
$$

In this methods the heat losses (when adding the petroleum to the water) always played a substantial role.

The accuracy of the result equal or better than 5% can be reached by using any of the methods described above. However, one should remark that in the first method it was easiest. The most common mistake was neglecting the heat capacity of the calorimeter. This mistake increased the error additionally by about 8%.

Marks

No marking schemes are present in my archive materials. Only the mean scores are available. They are:

Problem \# 1	7.6 points
Problem \# 2	7.8 points (without the Romanian students)
Problem \# 3	5.9 points
Experimental problem	7.7 points

Thanks

The author would like to express deep thanks to Prof. Jan Mostowski and Dr. Yohanes Surya for reviewing the text and for valuable comments and remarks.

Literature

[1] R. Kunfalvi, Collection of Competition Tasks from the Ist trough XVth International Physics Olympiads, 1967 - 1984, Roland Eotvos Physical Society and UNESCO, Budapest 1985
[2] Tadeusz Pniewski, Olimpiady Fizyczne: XV i XVI, PZWS, Warszawa 1969
[3] Waldemar Gorzkowski, Zadania z fizyki z catego świata (z rozwiazaniami) - 20 lat Międzynarodowych Olimpiad Fizycznych, WNT, Warszawa 1994 [ISBN 83-204-1698-1]

