Solution

Fig. 2
We will use notation shown in Fig. 2.
As no horizontal force acts on the system ball + bullet, the horizontal component of momentum of this system before collision and after collision must be the same:

$$
m v_{0}=m v+M V .
$$

So,

$$
v=v_{0}-\frac{M}{m} V .
$$

From conditions described in the text of the problem it follows that

$$
v>V .
$$

After collision both the ball and the bullet continue a free motion in the gravitational field with initial horizontal velocities v and V, respectively. Motion of the ball and motion of the bullet are continued for the same time:

$$
t=\sqrt{\frac{2 h}{g}} .
$$

It is time of free fall from height h.
The distances passed by the ball and bullet during time t are:

$$
s=V t \quad \text { and } \quad d=v t
$$

respectively. Thus

$$
V=s \sqrt{\frac{g}{2 h}}
$$

Therefore

$$
v=v_{0}-\frac{M}{m} s \sqrt{\frac{g}{2 h}} .
$$

Finally:

$$
d=v_{0} \sqrt{\frac{2 h}{g}}-\frac{M}{m} s
$$

Numerically:

$$
d=100 \mathrm{~m}
$$

The total kinetic energy of the system was equal to the initial kinetic energy of the bullet:

$$
E_{0}=\frac{m v_{0}^{2}}{2}
$$

Immediately after the collision the total kinetic energy of the system is equal to the sum of the kinetic energy of the bullet and the ball:

$$
E_{m}=\frac{m v^{2}}{2}, \quad E_{M}=\frac{M V^{2}}{2}
$$

Their difference, converted into heat, was

$$
\Delta E=E_{0}-\left(E_{m}+E_{M}\right)
$$

It is the following part of the initial kinetic energy of the bullet:

$$
p=\frac{\Delta E}{E_{0}}=1-\frac{E_{m}+E_{M}}{E_{0}} .
$$

By using expressions for energies and velocities (quoted earlier) we get

$$
p=\frac{M}{m} \frac{s^{2}}{v_{0}^{2}} \frac{g}{2 h}\left(2 \frac{v_{0}}{s} \sqrt{\frac{2 h}{g}}-\frac{M+m}{m}\right) .
$$

Numerically:

$$
p=92,8 \% .
$$

